
AD-A087 596 SRI INTERNATIONAL MENLO PARK CA F/G 17/7

POLYGON REPRESENTATION OF TARGET LOCATION UNCERTAINTY FOR OCEAN-ETC(U)
mAY 60 L C BOEEN. J R OLNSTEAD N0001 -79-C-0329

UNCLASSIFIEn NL2 ffIIIIIIIIIII
IEEEEEEIIEEEEE
EEEIIIhEEEEIIE
IIEIIEEEEIIIIE
IEEEEEEEEEIIIE
IIIEIIEEEEIII

'7LEV~

V~
Technical Report May 1980

POLYGON REPRESENTATION
OF TARGET LOCATION UNCERTAINTY
FOR OCEAN SURVEILLANCE APPLICATION

By: LOLA C. GOHEEN JEFFREY R. OLMSTEAD

Prepared for: A

NAVAL ANALYSIS PROGRAM (Code 431)
OFFICE OF NAVAL RESEARCH ...
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

CONTRACT N00014-79-C-0329

TASK NR 274-310

_ Reproduction in whole or in part is permitted for any purpose
of the United States Government.

141: Approved for public release; distribution unlimited.

333 Ravenswood Avenue
Menlo Park, California 94025 U.S.A.
(415) 326-6200
Cable: SRI INTL MNP
TWX: 910-373-1246

80 8 4 127
.-.-...... . . .

Distribution List (Continued)

Name Number of Copies

Naval Research Laboratory 6
Washington, DC 20375

Code 2627
Code 5308
Code 7932
Code 7509

Naval Sea Systems Command
Washington, DC 20360
Code 63R-1

4

DL- 3

Technical Report May 1980

E 5 POLYGON REPRESENTATION
OF TARGET LOCATION UNCERTAINTY
FOR OCEAN SURVEILLANCE APPLICATION

By: LOLA C. GOHEEN JEFFREY R. OLMSTEAD

Prepared for:

NAVAL ANALYSIS PROGRAM (Code 431) CONTRACT N00014-79-C-0329
OFFICE OF NAVAL RESEARCH TASK NR 274-310
DEPARTMENT OF THE NAVY
ARLINGTON, VIRGINIA 22217

E_ I SRI Project 8385

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

Approved for public release; distribution unlimited.

Approved by:

JACQUES NAAR, Director
Center for Defense Analysis

DAVID 0. ELLIOTT, Executive Director
Systems Research and Analysis Division

333 Ravenswood Avenue Menlo Park, California 94025 • U.S.A.

,m (4151 326-6200 Cable: SRI INTL MNP TWX: 910-373-1246

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. NT'S CATALOG NUMBER

4. TITLE (and Subtitle) •5 YPE R1PORT 80PERIOO COVERED

-OLYGON.REPRESENTATION OF TRGET LOCATION / Fina Rr)F 79-.Ma e.

UNCERTAINTY FOR OCEAN SURVEILLANCE APPLICATION~ 080. c . .

6....6._PE.flMIN-G QR. REPORT NUMBER
7. AUTHC) -' -RI Project 8385

/~~~~ CO"''"8,NTRACT OR GRANT NUMBER(s)

Ti01a C./Goheen Jeffrey R./Olmstea-dJ $-N..AC1 OR GN UB(

n-iternat:-ional now at ATAC

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

SRI International
333 Ravenswood Avenue R01451 NR 274-310
Menlo Park, California 94025 3.45 NN . OF7PAGESP IT ATE 13. NO. OF PAGES

11. CONTROLL!NG OFFICE NAME AND ADDRESS 170ay)*80170
Naval Analysis Program (Code 431) Z- ... 8
Office of Naval Research "T5. SECURITY CLASS (of this report)

Department of the Navy /
Arlington, Virginia 99917 UNCLASSIFIED

14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)

15a. DECLASSIFICATION /DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Polygonal uncertainty area Computer graphics
Target uncertainty area Algorithms to use polygonal

Ocean surveillance uncertainty representation

Target localization and classification Multisource information integration

2 SN'. TRACT (Continue on reverse side if necessary and identify by block number)

This report describes polygonal location uncertainty representation and
algorithms developed to use this uncertainty representation. The polygonal

representation and algorithms provide a method for encoding and integrating

target location information from many sources. The method has been implemented

in an interactive FORTRAN IV computer program, which is described. Program
output is graphically displayed. There are algorithms to fuse positive or
negative location information with a target distribution, calculate the -2

(cont inued)

D FORM I TDl JAN 73 14-'3 UNCLASSIFIED
EDITION OF i NOV 65 IS O1SOLETE SECURITY CLASSIFICA ION OF THIS PAGE iWhen Data Entereo .

L/

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When 0ata Entered)
19 KEY WORDS (Continued)

20 ABSTRACT (Continued)

conditional probability that a location report originated from a particular
target, move target uncertainty areas in time, and allow target uncertainty
areas to move along or around land masses.

-'

VDIS

DO FORM I (BACK)
D JAN 73 1'- (1
EDITION OF 1 NOV 66 I OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

L :;" - .=- . :J *,,: .'-

CONTENTS

LIST OF ILLUSTRATIONS. vii

LIST OF TABLES ix t
I INTRODUCTION AND SUMMARY. 1

A. Project Objectives. 1

B. Ocean Surveillance Application 1

C. Algorithms Required 3

D. Project Accomplishments 4

E. Future Research 7

II LOCATION UNCERTAINTY REPRESENTATION. 9

A. Multipolygonal Probability Distributions. 9

1. Mathematical Representation 10
2. Distributions with Holes. 11

B. Computer Representation of Targets 12

C. Computer Representation of Land Masses 15

III POLYGON ALGORITHMS. 19

A. Statistics Algorithm 19

1. Polygon Moments 19
2. Triangle Moments. 22
3. Eigenvalues 25
4. Mean and Covariance Subroutine. 27
5. Error Ellipse Subroutine. 29

B. Set-Operation Algorithm. 31

1. Subroutines in the IUCALC Package 31
2. Parameters of Subroutine IUCALC 33
3. Interface with IUCALC 34
4. Examples of Set Operations...... 38

C. Fusion Algorithm 39

1. Program Logic 40
2. Example of Fusion 44
3. Program Code. 46

v

D. Conditional Probability Algorithm. 48

1. Program Logic. 49
2. Example of Conditional Probability. 50
3. Program Code. 51

E. Prediction Algorithm 53

1. Program Logic 53
2. Examples of Prediction 59
3. Program Code 61

F. Land Interaction Algorithm 70

1. Approaches Considered for Land Interaction 71
2. Program Logic o..... 74
3. Examples of Land Interaction. 77
4. Program Code. 77

IV POLYGON RESEARCH COMiPUTER PROGRAM . .o....o. 87

A. General. 87

B. Interactive Capability 87

1. Defining aDistribution..... 90
2. Drawing an Error Ellipse... 92
3. Redrawing a Distribution o 93
4. Labeling a Distribution 93
5. Moving a Distribution..................93
6. Changing Polygon Weights. 93
7. Fusing Two Distributions. 94
8. Conditional Probability 94
9. Array Status. 94

10. Velocity Space. 95
11. Changing Time 95
12. Prediction. 95

REFERENCESo. 97

APPENDICES

A PROGRAM POL SOURCE CODEA-1

B PACKAGE IUCALC SOURCE CODE.B-I

DISTRIBUTION LIST o DL-l

vi

p

ILLUSTRATIONS

I Multipolygonal Probability Distribution 0

2 Distributions with Holes 12

3 A Polygon Broken into Triangular Parts 21

4 Oblique Coordinates for Area Integration 23

5 Two-Sigma Error Ellipse 30

6 Bivariate Normal Approximation 31

7 Structure of the IUCALC Package 32

8 Polygon Set Operations 39

9 Intersection Fusion of Two Distributions with
Negative Weights 45

10 Target Likelihood 49

11 Probability of Detection 52

12 Graphic Outline of Exact Algorithm 56

13 Example of Triangular Position Distribution and
Quadrilateral Velocity Distribution Prediction 57

14 Example of Elliptical Position and Velocity
Distribution Prediction 60

15 Erroneous NUCUMUN Result 66

16 Development of Erroneous IUCALC Result 68

17 Erroneous IUCALC Result 69

18 Example of Target Distribution Evolution Around

a Land Mass 73

19 Example of Target Distribution Evolution Near a
Choke Point 79

20 Structure of Polygon Research Program 88

21 Defining Distributions 91

vii

sow-,

TABLES

1 Land Mass Definition Algorithm 17

2 Mean and Covariance Subroutines: MOM and CENTRD 28

3 Error Ellipse Subroutine: EIGEN 30

4 IUCALC Interface Subroutines: OAK and PREIU 36

5 Fusion Algorithm......................................47

6 Conditional Probability Algorithm. 53

7 Prediction Algorithm 62

ix

I INTRODUCTION AND SUMMARY

This report discusses the use of multiple polygons to represent

probability distributions in two dimensions. Research was performed on

computer algorithms to manipulate multipolygonal distributions so that

they may be useful in an ocean surveillance target localization applica-

tion. The following sections discuss the project objectives, the rele-

vance to the ocean surveillance problem, the algorithms required, the

accomplishments of the project, and future research that is needed.

A. Project Objectives

The project objectives were to demonstrate (1) that a computational

method based on polygons is feasible, and (2) that algorithms can be de-

veloped to graphically display target uncertainty areas for an ocean

surveillance application. We have satisfied these objectives by develop-

ing a research computer program that can perform many functions needed

in an ocean surveillance correlation center. The computational methods

we developed appear feasible for application programs. Many basic algo-

rithms were developed.

B. Ocean Surveillance Application

The research performed is relevant to the general ocean surveillance

problem. The methodology may provide a new tool for target localization

because it will permit an efficient representation that can integrate

reports on target location.

Target location reports arise from a multiplicity of sensors and

can be reports of target contact, no-contact, or other intelligence. In-

formation on target location, including target contact reports arising

from surveillance, appears as a geographic region within which the target

lies at a fixed time with a given probability. This target uncertainty

1t
I[

region usually appears as a bearing sector, a bearing and range sector,

an acoustic convergence zone, an ellipse, or a transit lane region. As

the time of the report recedes into the past, the uncertainty region

moves and deforms. The movement defines the target track, while the de-

formation represents increased positional uncertainty.

Negative information areas appear as geographic regions within

which the target is known not to lie. Negative information can arise

from regions within which it is physically impossible for the target to

be located (such as a land mass when the target is a ship or submarine)

or they can arise from target no-contact reports.

Target uncertainty areas can be represented as accurately as de-

sired by polygons. Moreover, polygons can be represented efficiently on

a digital computer. Thus, polygonal representation of uncertainty areas

offers a versatile method of encoding target location information from

many sources. The method permits the integration of target location in-

formation from multiple sources. Negative information reports can easily

be incorporated, and land masses, choke points, and islands can be repre-

sented.

Two other methods of representing uncertainty are also applicable

to ocean surveillance target localization: the Gaussian and Bayesian

representations. Target localization may be performed by assuming a

bivariate normal (Gaussian) probability distribution. More commonly,

though, it is target tracking (rather than target localization) that

utilizes the Gaussian representation. Target localization may also be

performed with a Bayesian xy-cell representation. This method is not

common, but it is a powerful approach if the target area is small

enough that the number of xy-cells is manageable in a computer. The

Bayesian method essentially develops a grid of xy-probabilities for each

target by estimating probabilities of receiving a given report assuming

that the target is in an xy-cell. Very complex probability distributions

can be handled in this way.

The polygon method is compatible with both the Gaussian and the

Bayesian methods. Polygons can be used before the uncertainty area

2

.......

becomes small and unimodal; after that, the Gaussian method is more ap-

propriate. Polygons can be used on a global scale where the Bayesian

method is impractical or impossible. In a global situation where the

Bayesian method would take very large amounts of computer time and memory,

the polygon method would only use a modest amount of computer resources.

It is in this sense that the polygon method is "computationally efficient."

Even though it sounds as though there are areas of overlap and competition

between the Bayesian and polygon methods, there is actually a natural way

to use them together. This hybrid idea is discussed in Section I-E.

In summary, some localization problems are best described by a

Gaussian representation, some by a Bayesian representation, and some by

a polygon representation. Polygons appear more applicable to global

ocean surveillance than to (1) tracking situations where Gaussian methods

are preferred, and (2) small-area localization situations where the

Bayesian method is feasible and may be preferred. In addition to using

the polygon representation by itself, there is an opportunity to create

hybrid representations that may prove useful and cover a wide range of

applications, ocean surveillance or otherwise.

C. Algorithms Required

The kinds of algorithms that are needed for ocean surveillance ap-

plication arise from the need to handle positive and negative informa-

tion, and to do so over time and under geographic constraints.

Localization is dynamic and, therefore, prediction algorithms are

needed. The target polygons must grow in time (negative information

polygons shrink in time), and this implies the need for a velocity un-

certainty representation.

To perform in a Bayesian-like way, there must be algorithms to cal-

culate the geographic likelihoods of several targets with respect to a

contact report. These conditional probabilities can then be used in a

target classification scheme to associate contact reports with specific

3

targets. The idea of using polygons in a classification methodology is

discussed in Section I-E, along with ideas of hybrid representations.

Algorithms are needed to combine a new report into current target

uncertainty areas. New multipolygonal position and velocity distributions

are thereby created.

Finally, algorithms are needed to allow uncertainty areas to inter-

act with land. Uncertainty areas must deform and split apart to repre-

sent the uncertain behavior of a target as it maneuvers along coastal

areas, through straits, or around islands.

D. Project Accomplishments

A research computer program was developed. It was used to investi-

gate polygonal location-uncertainty representation and to test algorithms

that use this uncertainty representation. The basic idea in representing

location uncertainty is to build up a probability density function of

xy-points by imagining polygons of various heights (polyhedra) being

stacked on top of each other. In this way, a wide variety of density

functions can be synthesized. This "multipolygon" idea was implemented

and used to represent target position uncertainty.

One of the first algorithms developed was a subroutine to calculate

the mean and covariance matrix of a general multipolygonal distribution.

These distribution statistics were then used to display the associated

error ellipse, and were also used as input to other algorithms. The

"statistics algorithm" proved to be quite general in the sense that it

could be used on distributions defined in a variety of ways.

A "set-operation algorithm" was implemented; it accepts two arbi-

trary polygons and returns the polygon (or polygons) of intersection,

union, or negative intersection. We did not develop this algorithm but

used a subroutine package developed by Oak Ridge National Laboratory

and adapted it to our CDC 6400 computer. This basic set-operation

References are listed at the end of this report.

4

algorithm was used by other algorithms to perform data association, pre-

diction, and land interaction functions. Set-operations (intersection,

union, and negative intersection) were the basic tools in developing

polygon algorithms within an ocean surveillance context.

One application of set operations was an algorithm for calculating

the multipolygonal distribution that resulted from an intersection or

negative intersection of two other multipolygonal distributions. This

"fusion algorithm" can be used to fuse (integrate, meld, filter) positive

or negative location information with a target distribution. Fusion is

carried out by intersections and negative intersections. The union of

two probability distributions does not seem to have a natural application

in the ocean surveillance context.

An algorithm was developed to calculate the conditional probability

that a location report originated from a particular target. Both the

reported location and the target location are represented by multipoly-

gonal probability distributions. The conditional probability is the

likelihood that a particular target is associated with the report, based

only on the location information in the report. Likelihoods based on

other information in the report (received radar characteristics, for

example) are multiplied times the above likelihood to produce a total

target likelihood with respect to all of the information in the report.

Total likelihood for each candidate target is calculated, and the target

with the maximum likelihood would be associated with the report. In

summary, the "conditional probability algorithm" can be used to calculate

target likelihoods with respect to location reports. In terms of ocean

surveillance parlance,2 the algorithm is used for "report-to-track" cor-

relation. The algorithm can also be used for the other ocean surveil-

lance functions: report-to-report, track-to-report, and track-to-track

correlation. Finally, the algorithm can be used to calculate other use-

ful conditional probabilities--for example: (i) the probability of find-

ing a target, given a search distribution, or (2) the probability of

killing a target, given a lethality distribution.

5

-%(

A "prediction algorithm" was developed to move target uncertainty

areas in time. A multipolygonal target location distribution is assigned

a multipolygonal velocity distribution. The algorithm calculates a new

and larger location distribution based on the time step and the velocity

distribution. We believe this is new ground, and that it is a major

accomplishment of the project. From our literature search and contacts,

there appears to be no previous work on moving multiple polygons to repre-

sent target location uncertainty.

Finally, a "land-interaction algorithm" was developed to allow tar-

get distributions to move along or around land masses such as coast lines,

straits, and islands. The algorithm was designed to split the target

distribution into two parts when approaching land. The probability of

the direction the target will go is controlled by the terminal operator.

The land-interaction algorithm makes for a more realistic display than

simply having the target distribution accumulate against the shore line

or, worse yet, having it disappear into an island only to reappear on

the other side. The combination of the prediction algorithm and the land-

interaction algorithm is the beginning of a software package that is a

visually appealing and functionally versatile method for handling posi-

tive and negative information about targets of uncertain location.

The research program is written in FORTRAN IV for SRI's CDC 6400

computer. Program output is displayed on the Tektronics 4025 graphics

terminal.

During this research effort, the decision was made to develop and

implement as many algorithms as possible to use the polygonal location

uncertainty representation, since the purpose of the project was to

demonstrate (I) feasibility of the polygon data structure, and (2) feasi-

bility of developing algorithms which use this data structure to graphi-

cally display target uncertainty areas. Thus while the deficiencies of

some implemented algorithms were recognized and documented, effort was

directed toward developing more algorithms rather than correcting the

deficiencies of existing algorithms.

6

E. Future Research

The current research has met the objectives of the project but is

far from being a complete software package that can be used on displays

in an ocean surveillance correlation center. One area of future research

is to continue building on the capability developed so far, improving

current algorithms, and adding new ones. Included in this task would be

target classification representation and report association research.

Another research area is to investigate the usefulness of a hybrid

Bayesian/polygon representation of localization and classification.

The eventual goal of the polygon research is to produce a software

package than can (1) move target polygons around on a map, (2) accept

new reports containing location and classification information, (3) asso-

ciate the information with a target, (4) fuse the localization informa-

tion with the target polygons to improve the location estimate, and

(5) fuse the classification information with the target identity proba-

bilities to improve the classification estimate.

A more immediate goal would be to expand the current research com-

puter program to include a target identity representation, a classifica-

tion information representation, algorithms to associate reports with

targets, and algorithms to fuse classification information. In addition,

continued work on current algorithms is necessary to ensure their general

applicability.

Another line of research is to use polygons within a Bayesian ap-

proach. The Bayesian method uses detection and classification models to

predict what should be observed, and then actual observations are com-

pared to the prediction, and probabilities of xy-location and target

identity are changed in response to the observation. The method can be

effectively used in a multisensor/multitarget environment so long as the

numbers of xy-locations and target identities do not combine to produce

an impossible computational problem (even for large computers, computa-

tional limits are easily exceeded). The idea, then, is to use polygons

to limit the xy-region in which the Bayesian calculations take place.

The goal of the research would be to develop efficient algorithms that

7

marry the polygonal representation with the xy-point representation.

Investigation is needed to find speedier ways to do the Bayesian/polygon

hybrid equivalent of association and fusion. Perhaps a way could be

found to let polygonal algorithms preprocess the information before pass-

ing it on to the Bayesian algorithms, thus saving computation time. If

successful, the Bayesian/polygon hybrid methodology may free the power-

ful Bayesian method from its major drawback--a massive computational

burd en.

8

II LOCATION UNCERTAINTY REPRESENTATION

This section discusses how target location uncertainty and land

masses are represented. Section II-A covers the concepts of multipoly-

gonal probability distributions. Section II-B discusses the array and

indexing scheme we used to represent target distributions in the com-

puter. Section II-C discusses the array and indexing scheme used to

represent land masses. It also describes three subroutines utilized in

the definition of distributions and land masses.

A. Multipolygonal Probability Distributions

Figure I shows an example of a multipolygonal probability density

function. The multiple polygons on the left are shown as they appeared

on the display, and the figure on the right shows how the resulting proba-

bility surface looks in three dimensions. Notice that the three polygons

were assigned heights of 1, 2, and -1 units. Thus Polygon 2 is shown

twice as high (thick) as Polygon 1. Since Polygon 2 is stacked on top

of Polygon 1, the value of the density function within the boundary of

Polygon 2 is I + 2 = 3 units (actually this value is normalized so that

the integral of the density function over all xy-space is unity). Poly-

gons 2 and 3 are inside Polygon 1. Polygon 2 is stacked on top of Poly-

gon 1 because it was given a positive weight. However, Polygon 3 cuts

a hole out of Polygon 1 because it was given a negative weight. The

hole goes all the way through Polygon 1 because Polygon 3 has height -1

unit, which is equal but opposite to the height of Polygon i.

Summarizing, Figure 1 shows the general concept of multipolygonal

distributions. Polygons are defined by drawing them on the display and

assigning either a height value or a weight value to each one. If height

is given, then weight is calculated by multiplying the given height

times the area of the polygon (weight is equivalent to volume). The

weights may be positive or negative--within the restrictions set forth

9

POLYGON HEIGHT WEIGHT

1 1.0 0.75
2 2.0 0.39

3 -1.0 -0.14

FIGURE 1 MULTIPOLYGONAL PROBABILITY DISTRIBUTION

below. Positive weight means that the polygon is stacked on top of other

polygons; negative weight means that the polygon cuts out a hole in the

other polygons.

1. Mathematical Representation

The above visual concept can be made more rigorous by a mathe-

matical representation. Let Polygon j define the walls of a uniform

probability density function, u.(x,y), such that there is a constant
positive probability density for the xy-coordinates inside Polygon j and

a zero probability density for the xy-coordinates outside Polygon j. The

integral of u (x,y) over all xy-space is unity.

A multipolygonal probability density function, f(x,y) can then

be defined by weighting and summing several such uniform density func-

tions:

f(x,y) Pi uj(x,y) (I)
~j

10

I

The polygon weights, P, can be positive or negative, but they are under

some restriction because f(x,y) cannot be negative at any xy-coordinate.

This means that (1) polygons with negative weights must lie inside poly-

gons with positive weights, and (2) the sum of positive heights must be

equal to or greater than the sum of negative heights inside those areas

enclosed by negatively weighted polygons. Another restriction on the

weights is that they must sum to one:

P. = 1 (2)
j

This restriction is because the integral of f(x,y) over all xy-space is

unity; therefore, integrating the uniform density functions to unity

leaves the P. to sum to one.J

When all of the weights, Pj, are non-negative, they may be

interpreted as probabilities (this is the reason for using the symbol

"P"). The multipolygonal probability distribution may then be viewed in

the following manner. Randomly choose, according to the probabilities,

P., a polygon from the set of all polygons in the distribution; then the
Ji

target location is uniformly distributed over the chosen polygon. This

view stems from Eq. (1), where the u.(x,y) are really conditional den-

sity functions, conditional on j, providing that the P. are non-negative.
3

Note that P. is not, in general, the probability that the target is in-
3

side Polygon j. The reason is that polygons may lie on top of each other

and the density adds up. Only if the polygons are separate (disjoint)

may the P. be interpreted as containment probabilities.
3

2. Distributions with Holes

Figure 2 shows three ways to make a distribution with a hole

in it. The methods shown on the left and in the middle use two polygons,

while the method on the right uses a single polygon. The first two

methods are essentially the same; in both cases the inside polygon is

assigned a negative weight. In the first case, the negative weight is

the result of a negative height multiplied by a positive area. We chose

11

rI ' ... _ -- -...

NEGATIVE COUNTERCLOCKWISE BRANCH CUT
HEIGHT POLYGON

FIGURE 2 DISTRIBUTIONS WITH HOLES 4

to define polygons with vertices listed in a clockwise direction as con-

taining positive areas. In the second case, the negative weight results

from a positive height multiplied by a negative area (counterclockwise

polygon).

The third method uses a single polygon and a "branch cut" to

define the hole. The inside part of the polygon is a hole because of

the counterclockwise sense of the vertices. The branch cut is invisible

to algorithms using the distribution because the cut is traversed twice,

once in one direction, and once in the opposite direction. When there

is a choice, the branch-cut method is preferred because there are no

negative weights associated with the distribution.

B. Computer Representation of Targets

The computer program is designed to accommodate several targets;

each target is described by one position distribution and one velocity

distribution for each of several time steps. The position distribution

represents the probability that the target is at various positions with-

in the area at a certain time step. The velocity distribution represents

12

all possible positions of the centroid of the position distribution at

the next time step. Furthermore, each target distribution (position and

velocity over time) may contain several polygons and each polygon may

consist of many vertices. The memory requirement for this target descrip-

tion was too large to use a combinatorial indexing scheme. For example,r

9 targets, 2 spaces (position and velocity space), 5 time steps, 10 poly-

gons per distribution, and 50 xy-points per polygon require 9 • 2 • 5

10 • 50 • 2 = 90,000 words of memory. Although not impossible for a

large computer, this massive memory allocation is unnecessary because it

would be largely unused in any particular session at the terminal. In-

stead, we used index-pointers to define where polygons start and stop and

where their vertices start and stop.

The xy-coordinates of polygon vertices are saved in the arrays, X(I)

and Y(I), where I = 1, 1400. In other words, the program can save the

coordinates of 1400 vertices. The set of I-indices that start with IA(J)

and stop with IB(J) define the vertices of the J-th polygon (J = 1, 200).

The first xy-point and the last xy-point of the J-th polygon are equal

and describe the same vertex:

X(II) = X(12)

Y(Il) = Y(12)

where Il = IA(J) and 12 = IB(J). This redundance was convenient because

the Tektronix 4025 terminal required the first and last points to be

equal in order to display polygons.

The polygons are numbered from J = 1 to J = 200, and they are as-

signed to target distributions by index-pointers. The set of J-indices

that start with JA(L,M,N) and stop with JB(L,M,N) define the polygons

that belong to the L-th space (L = I position, L = 2 velocity), the M-th

time step (M = 1, 5), and the N-th target (N = 1, 9).

Summarizing the above scheme, the distribution parameters position/

velocity index L, time step index M, and target index N, determine the

set of polygons, (J], that belong to a particular LMN-distribution:

13

J =JA(L,M,N) to JB(L,M,N)

1

and each polygon J is represented as a set of indices, (I):

I = IA(J) to IB(J)

and each index, I, is associated with the vertex:

I-

X(I) Y(IM

This target-distribution representation takes (2 -5 -9.-2) + (200 2)

+ (1400 -2) = 3,380 words of memory--far less than the 90,000 words from

before. We have not experienced any operating restriction due to the

200-polygon limit or the 1400-vertex limit. In fact, it is convenient

to have available a large number of vertices per polygon (instead of a4

limit of 50, say) because the set-operation algorithm returns polygons

with an unknown number of vertices.

The computer representation of targets consists of two parts: the

X(I) and Y(I) vectors of polygon vertices, as already discussed, and

polygon weights, P(J), which may be positive or negative. These polygon

weights are associated with target distributions in exactly the same

manner as above: the weights, P(J), starting with J = JA(L,M,N) and

stopping with J = JB(L,M,N), are associated with the LMN-distribution.

The sum of P(over the start-to-stop set of J-values is unity.

In addition to the arrays needed to describe and save multipolygoal

probability distributions, the program also saves auxiliary arrays that

are useful in polygon algorithms. The height of each polygon, H(J), is

saved. The heights are normalized so that the total volume of the distri-

bution is unity. The centroid of each polygon, (XCEN(J), YCEN(J)), is

saved and used in the prediction algorithm. Statistics of each (LMN)-

distribution, SE(I + KL) (for I from 1 to 9, and KL 90KE(L,M,N)), are

saved:

14

before.~~~~~~~~~~~~~ Wehv oteprece n praigrstito uet h

SE(l + KL) is the mean of the x coordinates.

SE(2 + KL) is the mean of the y coordinates.

SE(3 + KL) is thle minor semiaxis of the 20 error ellipse.

SE(4 + KL) is the major semiaxis of the 2o error ellipse.

SE(5 + KL) is sin e.

SE(%, + KL) is cos e, where e is the clockwise angle from north to

the major axis.

SE(7 + KL) is the variance of the x coordinates.

SE(8 + KL) is the variance of the y coordinates.

SE(9 + KL) is the covariance of the x and y coordinates.

KE is an array containing pointers that index SE as a function of

(L,M,N). KE(L,M,N) yields the index in SE that immediately

precedes the statistics of the distribution (L,M,N).

It is convenient to explain four variables that occur frequently in

the program code, JJ, ILA, JLA, and KIA:

JJ is the polygon counter for a specific distribution.

ILA is the counter of the number of vertices stored in the X and

Y arrays.

JU is the counter of the number of polygons stored in the X and

Y arrays.

KIA is the counter of the number of statistics stored in the SE

array.

C. Computer Representation of Land Masses

The computer program is designed to accommodate several land masses.

Each land mass is described by a polygon, which may consist of many ver-

tices. The xy-coordinates of land mass vertices are stored, respectively,

in arrays LAX and LAY. The scheme used to index into LAX and LAY is the

15

!(

same as that used for the arrays X and Y. That is, the set of indices

that start with LIA(L) and stop with LIB(L) define the vertices of the

L-th land mass (L = 1, 200), with

LAX(LIA(L)) =LAX(LIB(L))

LAY(LIA(L)) - LAY(LIB(L))

Land masses are numbered from I up to 200, and LJB(l,l,I) is the number

of land masses defined for any particular session. Table I gives the

land mass definition algorithm.

When land is defined, the variable LAND is set to TRUE and sub-

routine LANDEF is called. Subroutine LANDEF controls the input of land.

Land may be input from a properly prepared file named TAPE9, and/or from

the terminal. Whenever a land mass is defined from the terminal the

rectangle circumscribing it is computed. Thus, for land mass L:

LN(L) is the value of the largest y-coordinate.

LE(L) is the value of the largest x-coordinate.

LS(L) is the value of the smallest y-coordinate.

LW(L) is the value of the smallest x-coordinate.

The terminal operator has the option of saving defined land masses and

circumscribing rectangles on a file named TAPEIO.

Certain subroutines are utilized during the definition of target

distributions and land masses. These are GET, PUT, and VEC. Subroutine

GET allows the operator to define target distributions and land from the

terminal. Subroutine PUT stores distributions in arrays X and Y, and

land masses in arrays LAX and LAY. Subroutine VEC draws polygons.

16

Table I.

LAND MASS DEFINITION ALGORITHMi

S. LAND
LAND= F.
WRI TE(6,60)

C ENDFILE 6
WRI TE(8,60)

60 FORMAT(*DEFINE LAND (Y OR N)*)
READ(5. 14) 0
WRITE(6,14) 0
WRITE(7,l4) 0
WRITE(8, 14) 0
IF(G.EO.IHY) LAND-.T.
IF(.NOT.LAND) GOTO 100
CALL MESSAGC(7HPOL ,7HLANDEF
CALL LANDEF(LAXLAY..LIA,LIBLJB.LN,LELS,LW,XW.YW)
WRITE(6, 28)
WRITE(8, 28)
WRI TE(6, 70)

c ENOFILE 6
WRITE(8, 70)

70 FORMAT(*HOW CLOSE SHOULD BE THE DIFFERENCE IN AREAS (IN PERCENT*,
S * OF INPUT AREA) F10.5*)
READ(5,75) CLOSE

75 FORMAT(IlO.5)

CLOSE=CLOSE/ 100.
WRITE(6,85) INC,CLOSE

C ENDFILE 6
WRITE(7,85) INC.CLOSE

C ENOFILE 7
WRITEC8,85) INC.CLOSE

85 FORMAT(*INC= s,G11.5,u CLOSE= *,GI1.5)
WRITEC6,96) COUNT

C ENDFILE 6
WRITE(7,96) COUNT

C ENDFILE 7
WRITE(8,96) COUNT

96 FORMAT(u'THE NUMBER OF ITERATIONS ALLOWED IS s.13,.m)

SUBROUTINE LANDEF(LAXLAY,LIALIS LJB,LN,LE,LS.LW,
s XWYW)

C LANOEF AT USER OPTION DEFINES LAND MASSES BY ACCESSING A LAND FILE ON
C UNIT 9 OR BY TERMINAL INPUT
C

DIMENSION XWC1).YW(1),LIA(200),LIB(200),LJA(1,1,1).LJBII.1,1)
LOGICAL FLAG
REAL LAX(1400),LAY(1400),LW(200),LN(200),LEC200) ,LS(200)
DATA LIL, LJL/0, 0/, JJ, J2/O, 0/
DATA 12/0/
CALL MESSAGA(7HLANDEF
WRI TE(6, 7)
WRITECS, 7)

7 FORMAT(w9LIN 6*)
LJB(1,*1 ,1) uO
FLAG.F.

17

Table 1 (Concluded)

WRITE(6, 10)
WRITECS, 10)

C ENDFILE 6
10 FORMAT(* USE LAND FILE? (Y OR N) *

READ(5.20) Q
WRITE(6,20) 0
WRITE(7,20) Q
WRITE(8,20) 0

20 FORMAT(A1)
IF(Q.EQ.1HY) 100,200

100 CONTINUE
READ(9) LAX. LAY, LIA, LIB,LJA, LJB, LWLE,LN,LS
FLAG=.T.
J2=LJB(1 ,1 ,1)
D0 130 Jul,J2
I1=LIACJ)
12=LIB(J)
CALL VEC(11.,I2,LAX,LAY)

130 CONTINUE
200 CONTINUE

WRITE(6, 30)
WRI TECS, 30)

C ENOFILE 6
30 FORMAT(x DEFINE LAND FROM TERMINAL? (Y OR N)*)

READ(5,20) Q
WRITE(6,20) 0
WRITEC7,20) 0
WRITE(8,20) 0
IF(0.EQ.1HY) 300,400

300 CONTINUE
IF(FLAG) 320,325

320 CONTINUE
JJ=J2

325 CONTINUE

CALL GETCIMAX,XW,YW,X0,YO,R1,R2.D1,D2)
CALL VEC(1,IMAX,XW,YW)
CALL PUTC1,1,1,JJ,IMAX,XW,YW,LIA,LIB.LJA,LJB,LJ,LAX.LAY,

S 12,J2)
CALL MESSAGC(7HLANDEF ,7HRECTAN
CALL RECTANC1, IMAX,XW,YW,LN(LJ),LE(LJ).LS(LJ)..LW(LJ))
CALL MESSAGA(7HLANDEF
WRITE(C6, 40)

C ENDFILE 6
WRI TE(8,40)

40 FORMATCxMOR9 LAND? (Y OR N)*)
READ(5,20) 0
WRITE(6j20) 0
WRITEC7,20) 0 *
IF(G.EQ.1HY) GOTO 325

400 CONTINUE
WRI TE(6, 50)
WRI TECS, 50)

50 FORMAT(x SAVE LAND ON UNIT 10? (Y OR N)x)
READ(5,20) 0
WRITE(6,20) 0
WRITE(7,20) Q
WRITE(8,20) 0
IF(0.EG.1HYI 500,600

50WRNIEO LXLALALBLALBWELNL
ENOIE10 AAIIJJWLNL

60CNTFINE1
00CALLINESA(7ADE

CALETURN (7LADE

END

18

III POLYGON ALGORITHMS

This section describes six polygon algorithms that have been de-

veloped, how they are implemented, and any problems associated with

their implementation.

A. Statistics Algorithm

A "statistics algorithm" was developed to calculate the mean and

covariance and the error ellipse of a multipolygonal probability distri-

bution. The algorithm can be used on multipolygonal distributions, in-

cluding distributions that have negative weights. The algorithm calcu-

lates the statistics of each individual polygon and then forms a weighted

average over all the polygons in the distribution. The derivation of

the algorithm is presented in Sections III-A-l, 2, and 3, below, and the

implementation of the algorithm is presented in Sections III-A-4 and 5.

1. Polygon Moments

The algorithm calculates the area and the first and second

moments of an arbitrary polygon. Moments are defined as:

f dx dy (3)

where f assumes the following five functional values:

)x2 2(4
f = x, y, x2, y , xy (4)

The region of integration is inside a polygon, P, and the area of P is

given by

A ffdy . (5)

19

-AI &16, -

A polygon may be thought of as a two-dimensional probability

distribution: points outside the polygon have zero probability density,

and the points inside the polygon have constant probability density equal

to I/A. Therefore, integrating over the polygon and dividing by the

area is equivalent to integrating over the probability distribution.

The method for calculating the moments is: divide the polygon

into triangles, find the area-weighted moments of each triangle, add

them up, and then divide by the total area. The legitimacy of this ap-

proach is found in Stokes's Theorem, which relates line integrals to

surface integrals. For the two-dimensional case, the theorem may be

written:

F - dr f X F) " k dx dy (6)

where the contour, C, encircles the area P; and k is the unit vector in

the z-direction. For example, if F is defined as:

F =(0, x/3,) (7)

then

f
=f (2F d =/jjx dx dy . (8)

For the purposes of the following discussion, the integral over an area,

P, is positive when the contour, C, is counterclockwise, and the integral

is negative if C is clockwise.

Figure 3 shows the polygon, P, broken into triangles, PI P2 P3

The line integral over the contour, C, is equivalent to the sum of line

integrals over the triangular contours, C 1 C C2 . This equivalence can

be symbolically expressed as:

fu fcL +fC
3

(9)

20

II

CI P

rhe reason the three integrals add up to the single integral over C is

that the dashed sides of the triangles are traversed twice, once in a

given direction for a triangle and then again in the opposite direction

for the adjacent triangle. Thus, the dashed sides of the triangles do

not contribute to the sum; only the solid sides contribute, and when

added together, they produce the integral over C. By Stokes's Theorem

the sum of line integrals is also a sum of area integrals and can be

symbolically expressed as:

21

-

C2 P2

Notice that the integral over P3 is subtracted because the contour, C3,
is in a clockwise direction. Thus, the conclusion is that the moments

of a polygon can be calculated by a sum of positive and negative inte-

grals over triangular parts of a polygon.

An alternative method for calculating polygon moments is to

use Stokes's Theorem directly and integrate around the perimeter of the

polygon. This method was not implemented for two reasons. First, the

triangle-area method results in equations with fewer terms than the

line-integral method; thus, derivation and programming are simplified.

Second, the number of triangles in a polygon is two less than the number

of sides of a polygon; thus the triangle-area method is slightly faster.

Although the line-integral method is theoretically more straightforward,

we chose to derive and implement the triangle-area method for the above

reasons.

2. Triangle Moments

The next task was to derive the first and second moments of

an arbitrary triangle. The general equations for the first moments and

special equations for the x and y moments of inertia of a triangle are

given in Pearson.3 We did not readily find a reference on the general

equations for the second moments of a triangle.

The derivation uses an oblique coordinate system as shown in
Figure 4. Integration is over the rs-space inside the triangle: first

r is integrated from 0 to R and then s is integrated from 0 to C. The

equation for R is found by similarity of triangles:

R = B(l - s/C) . (ll)

The moments are then given by:

In this derivation, a positive-area triangle has its points ordered in
a clockwise direction.

22

V

B x 2
Y2)

r

x1, drds

C (x 3 ' Y3)

Vx

FIGURE 4 OBLIQUE COORDINATES FOR AREA INTEGRATION

/ jR f sin (y-) dr ds (12)

As before,

f = x, y, x , xy (13)

where x and y are now functions of r and s.

The area of a triangle, A, is easily calculated from the cross

product of vector C with vector B:

A =(CxBy - Bx C)/2 (14)

Also, by geometry:

23

A = BC sin (y-)/2 (15)

Therefore the moments may be written:

C R
i~

f f dr ds *(16)

The second moments are most easily calculated by using the identities:

2 _2 -
x = x +Ax

-2 -
y = y + Ay (17)

xy x y + AxAy

whereAx =x-x, and Ay = y-y

The transformation equations from rs-space to xy-space are:

x Y 1 + r sin + s sin y

y Y + r cos + s cosy (8

Using these equations, the second central moments of a triangle in xy-

space can be written in terms of the second central moments in rs-space;

for example:

AxY = B B yAr /Bx y

+ (BxCy + Cx B y) ArAs/BC (19)

+ CC as2/C
xy

where sin e = B /B, etc.
x

The second central moments in rs-space are calculated using

identities such as:

ArAs f rs - r s

24

Ii

where the r,s moments are derived by integration; for example:

2 C R

C
=s fI1 rs dr ds (20)

2

0s (1 - s/C) s ds

The results are:

r = B/3

s = C/3

r = B2/6 (21)

2 2
s - C /6

rs = BC/12

The first moments and the second central moments for a triangle

in xy-space are then computed:

x = xI + (B + C)/3X x

= Yl + (B + C)/3

Ax = (B2 - B C + C)/18 (22)x x x x

2 (B - B C + C)/18
Y yy y

AxAy= [BxBy - (B C + C B)/2 + C C]/18ty x y xy x y

3. Eigenvalues

The "error ellipse" that corresponds to a polygonal probability

distribution can be determined from the distribution's statistics. The

center of the ellipse is at (x,y). If a 2-by-2 covariance matrix, V,

is defined as:

25

22 _-
VI =x -x

2

V2=y -y (23)

v 12 y = x Y V 21

then the orientation and principal-axis standard deviations of the el-

lipse are determined by an eigenvalue calculation, as derived below.

The eigenvalue problem can be written as:

- 2--
Vu = o u (24)

where- is a 2-by-l vector and a is a scalar. The eigenvalues are de-

rived by noting that the determinant of the equation must be zero:

IV - a 2 1I = 0 (25)

This quadradic equation yields the two eigenvalues:

201 (P - Q)/2 (26)

2 = (P + Q)/2

where:

p V V11 + V22

Q [(VII - V22) 2 + 4V 2] 1/2 (27)

The eigenvector, u2, that corresponds to the larger of the two sigmas,

02, is found by using one of the linear equations implied by:

(V - 02 1) 2 = 0 (28)

26

The equation determines a ratio between the components of _, and there-

fore an angle can be calculated:

V= arc tan [V12/(o - V1 1)] (29)

where a is the angle from the y axis to the long axis of the ellipse.

4. Mean and Covariance Subroutine

Table 2 shows the subroutines that calculate polygon distribu-

tion statistics. The input parameters to subroutine MOM are (1) the

polygon-index limits, Jl and J2; (2) the vectors of vertex-index limits,

IA and IB; (3) the vector of polygon vertices, X and Y; and (4) the

vector of polygon weights, P. The output parameters are (1) the vector

of polygon heights, H; (2) the means of the distribution, EX and EY; (3)

the variances, EXX and EYY, and the covariance, EXY; and (4) the vector

of polygon centroids, XCEN and YCEN. The input parameters to subroutine

CENTRD are (1) the vector-index limits, Il, 12, of the distinct vertices

of a polygon; and (2) the vectors of polygon vertices, X and Y. The out-

put parameters are (1) the area of the polygon, A; (2) values proportional

to the first moments of the polygon, AX and AY; and (3) values proportional

to the second moments of the polygon, AXX, AYY, AXY.

In subroutine CENTRD, the loop is over the triangles constitut-

ing the polygon. The number of triangles, 122, is two less than the

number of polygon vertices. The vectors (BX,BY) and (CX,CY) determine

two sides of the triangle. The formulas for the area and moments of a

triangle are easily recognized by referring to the previous section.

The triangle moments are weighted by the area of each triangle (which

may be positive or negative) and then summed over all triangles in the

polygon.

In subroutine MOM, the loop is over the polygons that consti-

tute the distribution. MOM calls CENTRD once for each polygon. When

control returns to MOM from CENTRD, the centroid of the polygon is cal-

culated; the x coordinate of the centroid is stored in XCEN(J), and the

27

Table 2

MEAN AND COVARIANCE SUBROUTINES:
MOM AND CENTRD

SUBROUTINE MOM(J1,J2, IA. IB,X,YP,HEXEYEXX,EYY,EXY,XCEN.YCEN)
DIMENSION XCENC1),YCEN(1), IA~i). IBC1),X(1),YC1),P(1),H(l)
EXxEYnEXX=EYY=EXY=O.
DO 55 JmJ1,J2
I 1zIA(J)
122IB(J)-I
CALL MESSAGC(7HMOM ,7HCENTRD I
CALL CENTRDt11,I2,X(,Y,AAX,AYAXXA1Y,AXY)
XCEN(J mAX/A
YCEN(J) =AY/A
Z~P(j)/A
EX=EX+ZAX
EY:EY+Z*AY I
EXXaEXX+Z*AXX
EYYBEYY+Z*AYY
EXYmEXY+Z*AXY
H(J)aP(J)/ABS(A)

55 CONTINUE
EXXaEXX-EX*EX 4
EXYaEXY-EXEY
RETURN
END

SUBROUTINE CENTRD(I1.I2,X,Y,A,AX,AY,AXXAYY,AXY)
C
C CENTRO CALCULATES THE AREA,AND FIRST MOMENTS AND VALUES
C PROPORTIONAL TO THE SECOND MOMENTS OF A POLYGON
C WHOSE DISTINCT VERTICES ARE STORED IN IUCALC OUTPUT FORMAT
C IN X(I),Y(l)12s1,12.
C CENTRO IS CALLED BY GOLDSEC AND MOM.

DIMENSION X(I),Y(1)
CALL MESSAGA(7HCENTRD
122=12-2
Au AXzUAYmAXXzAYYu*AXY=O.
D0 50 1.11,122

BX=X 1+1)-X(Ii)
BYCY 2+1)-Y(Ii)
CX=X(*2) -XII)
CYaY(1*2) -YCII)
Al *O.OxCCX*SY-BXxCY)

XI .XC Ii)+CBX+CX)/3.
YlnY(I11)+(BY+CYI/3.
AXaAX+AI SXI
AYmAY+AI sYl
AXXzAXX+AI*CXISXI+(BXRBX-BXsCX*CXxCX)/18.
AYYaAYY+AIU(YI *YI+(BY'BY-BYwCY+CY*CY)/18.I
AXY.AXY+AI '(XI *Yl+CBXsBY-0. 53(BX*CY+CX*BY)+CX*CY)/1B.)

s0 CONTINUE
WRITE(7, 20) AAX,AYAXX,AvY,AXY

90 FORMAT(*THE OUTPUT OF CENTRO IS *,/CSG1S.5))
CALL MESSAGR(7HCENTRD
RETURN
ENDO

28

y coordinate in YCEN(J). Then each area-weighted sum of triangle moments

is normalized by the area of the polygon, weighted by the P(J) values of

the polygon (which may be positive or negative), and then summed over all

polygons in the distribution. The moments that result from the DO-55

loop do not have to be normalized by the sum of P-weights because the

P(J) are already defined so that they sum to one. The heights of the

polygons are calculated and saved in this subroutine because it proved a

convenient place to do so. After leaving the DO-55 loop, the second

moments are converted to covariance parameters for output.

5. Error Ellipse Subroutine

Table 3 shows the computer algorithm that performs the eigen-

value calculation. The input parameters are the covariance terms, EXX,

EYY, and EXY. The output parameters are the 2-sigma values, RI and R2,

which lie along the minor and major axes; and the sine and cosine, Dl

and D2, of the angle from the y-axis to the major axis of the ellipse.

The first part of the subroutine takes care of two special cases when the

ellipse is aligned with the coordinate axis; the remainder of the sub-

routine follows the previous derivation.

Figure 5 shows an example of a 2-sigma error ellipse superim-

posed on its multipolygonal probability distribution.

Figure 6 shows how a bivariate normal distribution can be ap-

proximated with three 16-sided elliptically shaped polygons that are

stacked on top of each other. The resulting 2-sigma error ellipse nearly

coincides with the polygon that represents the 2-sigma ellipse of the

bivariate normal distribution. This is a result of the particular weight-

ing scheme used for the three polygons.

When a single elliptically shaped polygon is computed, the 2-

sigma error ellipse almost coincides with the polygon and thus the area

of the polygon and ellipse are nearly equal. Experience has shown that

the area of the 2-sigma error ellipse is always larger than the area of

an arbitrary polygon; therefore, the ellipse-to-polygon area ratio is a

convenient measure of the ellipticity of a polygon. As the polygon ap-

proaches an elliptical shape, the area ratio approaches a value of one.

29

Table 3

ERROR ELLIPSE SUBROUTINE:
EIGEN

SUBROUTINE EIGEN(EXXEYYEXY.R1,R2,01,D2)
IF(EXY.NE.0.) GO TO 70
iF(EXX.GT.EYY) GO TO 60
D1=0. SD0m1.
U=EXX SVcEYY $00 TO 80

60 D1*I. S02*O.
U=EYY $V*EXX $00 TO 80

70 EE=EXY*EXY

Q:SQRT! (EXX-EYY)**2+4. *EE)

VZ(P+Q)/Z.
WzV-EXX
0:SQRT(EE+W*W)
01 =EXY/D
02-W/D

80 R1=0.
IFCU/P.GT.I.E-100) R1:2.:SORT(U)
R2=2. SQRT(V)
RETURN
END

WEIGHT: J
P(11 - 0.43 -I M
P(2) = 0.57ELIS

FIGURE 5 TWO-SIGMA ERROR ELLIPSE

30

2-SIGMA
ELLIPSE

WEIGHT:

P(1) = 0.24
P(21 = 0.54

P(3) = 0.22

FIGURE 6 BIVARIATE NORMAL APPROXIMATION

B. Set-Operation Algorithm

A card deck of the IUCALC package (a set of FORTRAN subroutines

that calculate polygon intersections, unions, and negative intersections)

was obtained from the Computer Sciences Division, Oak Ridge National

Laboratory, Oak Ridge, Tennessee.' A copy of IUCALC was modified in

order to make the package compatible with the SRI CDC 6400 computer.

1. Subroutines in the IUCALC Package

The IUCALC package consists of eight subroutines and functions

as shown in Figure 7. These are briefly described below. Subroutine

IUCALC is the main routine of the package. Its primary function is to

call Subroutine IUSUBI and, when IUSUBI terminates normally, to call

Subroutine IUSUB2. The parameters of IUCALC are discussed in a separate

31

SENSE

IUCALC-

IS2 PNTGET
IUSUB2-SEGDEF _C ENSYD2

PNTGET

FIGURE 7 STRUCTURE OF THE IUCALC PACKAGE

section below. Subroutine IUSUBI generates coordinate points, each of

which is the intersection of a side of a polygon with a line segment of

a simply connected chain. (A simply connected chain is a sequence of

distinct directed line segments, el, e2 , ..., e . Each e. begins at
n 1

coordinate point (xi,Yi) and ends at coordinate point (x i+,Y), 1

i ! n. (xi,Yi) and (x i+1, i+) are called the endpoints of e.. Other

than at an endpoint, a line segment shares no point with another line

segment. The coordinate points (xl,Y1), (x 2 ,Y2) (x n+lyn+l) are

distinct with the exception that (xl,Yl) = (xyn+lYn+l) is allowed, in

which case the chain is called a closed chain (or a polygon); when

(xlY I) # (x+lY+l) the chain is called an open chain.) IUSUBI calls

the functions SENSE and ROUND. Subroutine IUSUB2 generates the coordi-

nate points of each resulting polygon or chain. IUSUB2 calls the sub-

routines SEGDEF and PNTGET.

Function SENSE determines whether the vertices of a polygon

are in clockwise or counterclockwise order. Function ROUND rounds

double precision numbers to single precision and is machine-dependent.

32

A CDC 6400 compatible ROUND function was written at SRI and is a part of

the IUCALC package operating on the CDC 6400.

Subroutine SEGDEF generates a matrix that defines the segments

of the resulting polygons or chains. (A segment is a series of success-

ive sides of a polygon or a series of successive line segments of a

chain, all of which must be entirely inside the other polygon, or all of

which must be entirely outside the other polygon, or all of which must

be entirely on the boundary of the other polygon.) SEGDEF calls Subrou-

tine PNTGET and Function ENSYD2.

Subroutine PNTGET returns a certain coordinate point selected

from among the coordinates of the input polygon and chain and the calcu-

lated points of intersection. Function ENSYD2 determines if a given

point is inside or outside a given polygon, and assumes the point is not

on a boundary of the polygon.

2. Parameters of Subroutine IUCALC

Subroutine IUCALC has 15 parameters. The first six parameters

define the polygon and chain to be operated on. In particular, the

parameters are:

APX The real array containing the x coordinates of polygon A.

APY The real array containing the y coordinates of polygon A.

NOAP The number of coordinate pairs in polygon A.

BCX The real array containing the x coordinates of chain B.

BCY The real array containing the y coordinates of chain B.

NOBC The number of coordinate pairs in chain B.

KALC The integer specifying the desired set operation--
specifically:

KALC = I Union of polygons A and B

KALC = 2 Intersection of polygons A and B

KALC = 3 Relative difference of polygon A to polygon B
(A intersect not-B)

KALC = 4 Relative difference of polygon B to polygon A
(B intersect not-A)

KALC = 5 Subchains of open chain B on the boundary of
polygon A

33

KALC = 6 Subchains of open chain B strictly exterior to
polygon A

KALC = 7 Subchains of open chain B strictly interior to
polygon A

KALC = 8 Subchains of open chain B exterior to or on the
boundary of polygon A

KALC = 9 Subchains of open chain B interior to or on the
boundary of polygon A.

The next two parameters define the work area. They are:

WORK The real array used as a work area. The dimension of the
array can be estimated by the formula

NOAP + NOBC + 6K + 2

where K is the number of points of intersection.

WRKMAX The dimension of the work space WORK.

The final six parameters contain the results of the calculations. In

particular, the parameters are:

RCX The real array containing the x coordinates of the
result polygons or chains.

RCY The real array containing the y coordinates of the

result polygons or chains.

NRCMAX The dimension of arrays RCX and RCY.

INORC The integer array that contains the index of the start
of each result polygon or chain in RCX and RCY, and
the number of coordinate pairs in each result polygon
or chain.

INOMAX The maximum allowed number of result polygons or
chains. The dimension of INORC is 2 by INOMAX.

NORC The number of result polygons or chains calculated;
or an error flag when the arrays INORC, or RCX and
RCY are exceeded.

3. Interface with IUCALC

It was convenient to develop two subroutines to communicate

with IUCALC. Subroutine OAK was developed because IUCALC cannot operate

directly on the multipolygonal vectors, X(I) and Y(I). Rather, IUCALC

requires vectors that describe single polygons. Furthermore, IUCALC

34

requires only the vertices of a polygon, not the first-equals-last re-

dundancy built into the XY-representation. Subroutine PREIU was de-

veloped because the iterative nature of two algorithms made it desirable

to call IUCALC and transfer the IUCALC result to one pair of the input

arrays with a single subroutine call.

The interface subroutine OAK is shown in Table 4. Subroutine

OAK has as input parameters:

KL The integer specifying the desired set operation.

JP The index defining the first input polygon

JQ The index defining the second input polygon

IA The array of vertex-start indices

IB The array of vertex-stop indices

X The x-coordinates of all polygons

Y The y-coordinates of all polygons.

The output parameters of subroutine OAK are:

RX The array of x-coordinates of the resultant polygons

RY The array of y-coordinates of the resultant polygons

IR The integer array that contains the index of the start
of each resultant polygon and the number of vertices
in each resultant polygon

JMAX The number of resultant polygons (including zero) or an
error flag indicating abnormal termination of processing
by IUCALC.

Subroutine OAK first calculates the number of vertices, NP and

NQ, in the two input polygons. Then pointing indices, IP and IQ, are

computed and used in the DO-loops that copy X and Y values into (PX,PY)

and (QX,QY) arrays for input to IUCALC.

The interface subroutine PREIU is shown in Table 4. Subroutine

PREIU has as input parameters:

XW The array of x-coordinates of the first input polygon

YW The array of y-coordinates of the first input polygon

IWI The number of distinct vertices in the first polygon

PX The array of x-coordinates of the second input polygon

35

Table 4

IUCALC INTERFACE SUBROUTINES:
OAK AND PREIU

SUBROUTINE OAK(KLJP,JQ, IA, IB,X,Y,RX,RY,IR,JMAX)
DIMENSION PX(50),PYC5O),O)(50),Y50),WK(300),

NPa IBCJP) -IACJP)
NO: IB(JO3- IA(JO
IP=IACJP) -1
IowIA(JO) -1
DO 127 Im1.NP
PX(I)X(I+IP)

127 PYCI)=YCI+IP)
DO 128 Iu1,NO
OX(I)X(1+10)

126 OY(I)=Y(I+IO)
CALL IUCALC(PXPY,NP,OX,QY,NQKL,WK,300,JMAX,IR,20,RX,RY,200)
RETURN
END

SUBROUTINE PREIU(XW,YW,IWI,PX,PY,M1,KL,IS,XSYS,
S SUB,FLAG,FLAG1 .JMAX)
LOGI CAL FLAG, FLAGI
DIMENSION XW(1),YW(1),PX(I),PY(1),XS(1),YS(1),WK(300),

S 15(2,1)
C
C PREIUJ CALLS IUCALC. TESTS JMAX FOR IUCALC AND CALLING ROUTINE ERRORS.
C THE IUCALC RESULT IS TRANSFERED TO XW,YW.
C IF ERROR THEN AN APPROPRIATE MESSAGE IS WRITTEN.
C SUB CONTAINS THE NAME OF CALLING ROUTINE.

CALL MESSAGA(7HPREIU
FLAG.T.
FLAGI..T.
WRITE(7,30) (XW(I),YW(I),1u1,IWI)
WRITE(7,30) (PX(I),PY(I), 1.1,M1)
CALL MESSAGC(7HPREIU ,7HIUCALC
CALL IUCALC(XW,YW,IW1.,PX,PY,M1,KL,WK,300,JMAX,IS,20,XS,YS,200)
CALL MESSAGA(7HPREIU
IF(JMAX) 100,200,300

100 CONTINUE
WRITE(6,151 JMAX,SUB
WRITE(7, 15) JMAX,SUB

C ENDFILE 7
15 FORMAT(MIUCALC ERROR m.13,* OCCURS IN x,A7)

WRI TECS, 25)
WRI TECS,253

25 FORMATC.SLIN 70)
IWi 11W) +1
XW(IWi 1)UXW(1)
YW(IWiI)EYW(1)

PXCM1 1)=PXC 1)
PYCMI 1)uPY(1)

30 FORMAT(5(013.5,013.5))
CALL VEC(1,IW1J,XW,YW)
CALL VECC1,M11,PX,PY)
FLAGa. F.
CALL MESSAOR(7HPREIU
RETURN

200 CONTINUE

36

Table 4 (Concluded)

C WRITE(6,40) SUB,JMAX

WRITE(7,40) SUB,JMAX
40 FORMAT(A7,*RESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT a

S *EXISTS. *j13)
C ENDFILE 7
C

C RESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT EXISTS
C

FLAGIz. F.
CALL MESSAGR(7HPREIU
RETURN

300 CONTINUE
C WRITE(6,50) JMAX

WRITE(7,50) JMAX
C ENDFILE 7

50 FORMAT(xPREIU CALLS RECOVER ,,13)
CALL RECOVER(JMAXXSYS,ISXWoYW.IWI.SUB)
CALL MESSAGA(7HPREIU)
IF(JMAX.EQ.O) FLAGI.F.
CALL MESSAGR(7HPREIU
RETURN
END

PY The array of y-coordinates of the second input polygon

Ml The number of distinct vertices in the second input polygon

KL The same as KL in OAK

SUB The name of the routine calling PREIU; this is used in error

messages.

Subroutine PREIU has as output parameters:

XW The array of x-coordinates of a selected resultant polygon

YW The array of y-coordinates of a selected resultant polygon

IWI The number of distinct vertices in the selected polygon

XS The same as RX in OAK

YS The same as RY in OAK

IS The same as IR in OAK

FLAGI FALSE The signal that the result is the same as the

original data or no result exists.

FLAG = FALSE The error flag that IUCALC has abnormally termi-

nated processing.

JMAX The same as JMAX in OAK.

FLAG and FLAGI are set to true upon entry into subroutine

PREIU. Then subroutine IUGALC is called. Upon return from IUCALC, the

37

.

value of JMAX is evaluated. When JMAX indicates that IUCALC has abnor-

mally terminated processing, FIAG is set to false, error messages are

written, and PREIU returns. When JMAX indicates that the result is the

same as the original data or no result exists, FLAGI is set to false,

messages are written, and PREIU returns. When JNAX indicates that one

or more resultant polygons have been computed, PREIU calls subroutine

RECOVER. Subroutine RECOVER searches XS, YS, and IS in order to elimi-

nate spurious vertices generated by IUCALC and select a resultant polygon.

The calling sequence of IUCALC is given below in terms of the

symbols in the previous section as compared to the symbols in subroutines

OAK and PREIU:

Input Output
IUCALC OAK PREIU IUCALC OAK PREIU

APX PX XW NORC JMAX JMAX

APY PY YW INORC IR IS

NOAP NP IWI INOMAX 20 20

BCX QX PX RCX RX XS

BCY QY PY RCY RY YS

NOBC NQ Ml NRCMAX 200 200

KALC KL KL

WORK WK WK

WRKMAX 300 300

4. Examples of Set Operations

Figure 8 shows examples of set operations. Two polygons, A

and B, were input to IUCALC and three results were computed:

* Intersection of A with B, A * B

* Union of A and B, A + B

* Negative intersection of A with B, A * B.

The other negative intersection, B * A, is not shown. Notice that all

of the set operations can produce multiple polygons. IUCALC returns

polygon vertices in a clockwise sense; holes in polygons are returned

38

kI

A

INTERSECTION UNION NEGATIVE
A B A + 8 INTERSECTION

A B

FIGURE 8 POLYGON SET OPERATIONS

as polygons with vertices in a counterclockwise sense. Counterclockwise

polygons are always inside clockwise polygons.

C. Fusion Algorithm

A "fusion algorithm" was developed to fuse (integrate, meld, filter)

two probability distributions into one distribution. Two different kinds

of fusion are possible, and they are multipolygonal counterparts to the

intersection and negative intersection set operations. Thus, a location-

report distribution can be fused with a target distribution by using

intersection fusion; and a negative-information distribution can be fused

with a target distribution by using negative-intersection fusion. The

algorithm cannot perform union fusion. Since it is not clear what the

union distribution represents in an ocean surveillance context, we did

not develop the algorithm (although it is possible to do so).

39

1. Program Logic

Assume that a location report is described by a single polygon,

R, and that the target uncertainty area, to which the report is associ-

ated, is described by a single polygon, T. Since the target is assumed

to be inside both polygons R and T at the same time, the intersection of

the two polygons must be used to define the target uncertainty region

after the fusion of the report. This single-polygon example is derived

mathematically and then the more complicated multipolygonal case is de-

duced.

An appropriate mathematical method for describing fusion is

the Bayesian method. For this method, (1) a likelihood function, g(R/x,y),

is defined; (2) a prior probability function, f(x,y/T), is defined; and

(3) the posterior probability density (the result of fusing the report

and target distributions) is calculated by Bayes's formula:

f(x,y/T') = K g(R/x,y) f(x,y/T) (30)

where K is a normalization constant that makes the integral of the

posterior density over all xy-space equal to unity.

In the single-polygon example, the "likelihood" of point (x,y)

with respect to the report is defined to be a function that is propor-

tional to the uniform density function that is associated with Polygon R:

g(R/x,y) = G u(x,y/R) (31)

where G can be any positive constant--in particular, unity.

The "prior" probability density is the probability density of

locating target, T, at point (x,y) before the report distribution is

fused with the prior distribution. For the single polygon example, the

prior density is just the uniform density associated with Polygon T:

f(x,y/T) = u(x,y/T) (32)

The integral of the prior density over all xy-space is unity.

40

b.,t

When Bayes's formula, Eq. (30), is used with the likelihood

function, Eq. (31), and prior density, Eq. (32), the result is:

f(x,y/T') = K G u(x,y/R) u(x,y/T) (33)

The product of the two uniform densities is proportional to a third uni-

form density, u(x,y/T'), because the product density is positive only

for those xy-points with positive density in both u(x,y/R) and u(x,y/T).

In other words, the resulting uniform distribution is defined by the

intersection, T' = R * T, and thus the posterior distribution is also

defined by this intersection. For the single-polygon example, the

Bayesian method produces the same result as the intuitive method of

intersecting two polygons.

The Bayesian methodology can be extended to handle the fusion

of two multipolygonal distributions. Assume that the report, R, is given

in terms of a multipolygonal likelihood function:

g(R/x,y) = G3 P(Rj) u(x,y/Rj) (34)

J

where G is a positive constant, Rj represents the j-th polygon in the

distribution, P(R.) is the weight of the j-th polygon, and u(x,y/R.) is

a uniform density function defined by the j-th polygon. Assume further

that the prior density for the target, T, is a multipolygonal density

function:

f(x,y/T) = k P(Tk) u(xy/Tk) (35)

k

where Tk is the k-th polygon in the distribution, P(Tk) is the weight

of the k-th polygon, and u(x,y/Tk) is a uniform density defined by the

k-th polygon.

By using Bayes's formula, Eq. (30), with the multipolygonal

representations of the likelihood function, Eq. (34), and prior density,

Eq. (35), the posterior density is written:

41

f~~yT' K (Rj (Tku(x,y/R. u(x,y/T. (36)
j k

The product of two uniform densities is proportional to a

single uniform density:

u(x,y/R u(x ,y/Tk) = Cjk u(x,y/Rj*Tk) (37)

where Cjk is a positive constant of proportionality. Cjk is easily de-

rived because at any xy-point with positive density, the value of the

density product on the left must equal Cjk times the value of the density

on the right; therefore,

Cjk = A(R.*Tk) / [IA(Rj)I IA(Tk)I] (38)

where A(X) is defined as the area of the set of polygons, X.

The area of a set of polygons is the sum of the positive areas

(clockwise polygons) and negative areas (counterclockwise polygons). Be-

cause of an IUCALC convention, the intersection, R. * Tk) produces only

clockwise polygons. A negative intersection also produces clockwise

polygons, but a union produces both clockwise and counterclockwise poly-

gons. The area of the set of polygons resulting from an intersection,

negative intersection, or union is always positive.

The set of pologons that are the result of the intersection,
Rj * Tk, can be denoted T' k n , where n = 1, N jk With this convention,

the above uniform density can be synthesized in terms of uniform density

functions that are defined by single polygons:

u(xy/Rj*Tk) = Qjkn u(xy/Tjkn) (39)

n

where the weights, Qjkn' are defined so that the value of the left side

is constant over all xy-points that have positive density. Under this

42

condition, the weights must be proportional to the areas of the elemental

polygons:

Qjkn = A(Tjkn) / A(Rj*Tk) . (40)

The denominator is just the sum of the areas over n = 1, Njk.

Putting the various pieces together, the posterior probability

density function can now be written as:

f(x,y/T') =)ux,y/Tk (41)
j k n

where the weights are given by:

P(T"kn) = KG P(R.) P(T) C. Q (42)
jk i k jk jkn

Using Eqs. (38) and (40), the equation for the weights can be reduced to

the following:

P(Tjk) - K G H(R.) H(Tk) A(Tkn) (43)

where the height of polygon X, H(X), can be positive or negative, and is

defined as:

H(X) = P(X) / IA(X)JI (44)

Note that the weights have to be normalized by the constant K such that

they sum to I over all jkn-polygons.

For those intersections, R. * Tk, that have no resultant poly-

gons (R. and Tk do not overlap), the jk-elements in Eq. (41) are skipped-J

over and not recorded. In the computer program, the three-index jkn-list

is transformed to a list based on a single index so that the representa-

tion of f(x,y/T') is similar to f(x,y/T), Eq. (35). The list of polygons

43

includes only those intersection polygons that are formed by overlapping

Rj and Tk polygons.

In summary, Eq. (41) describes the fusion of two multipolygonal

distributions. The polygons, T'k, are formed by using the intersection

operation in IUCALC, and the polygon weights are computed by using Eq.

(43).

The preceding discussion was concerned with the fusion of posi-

tive information, but it could equally well be applied to negative in-

formation. The only difference is that negative intersections are used

in place of (positive) intersections. For example, if a report, R, con-

sists of negative information (e.g., the target is not in Polygon R.),

then the fused polygons are given by: R. * Tk, where R. means the areaj J
outside Polygon R.. The intersection produces Polygons T'k and the 4

J
calculation of the weights proceeds as before.

2. Example of Fusion

Figure 9 shows an example in which a multipolygonal report

distribution is fused with a multipolygonal target distribution. Assume

that the report distribution is given by Polygons RI and R2, and that the

height of R2 equals the negative height of RI so that the probability

density is concentrated in a rectangular annulus, as shown by the shaded

area. Assume also that the target distribution is given by Polygons Tl

and T2 and that their heights are also equal but opposite. The heights

are given by:

H(Rl) = 1 / [A(Rl) - A(R2)]

H(R2) = -1 / [A(Rl) - A(R2)] (45)

H(TI) = I / [A(Tl) - A(T2)]

H(T2) = -1 / [A(Tl) - A(T2)]

where all of the areas, A(X), are positive values. These values for

height are derived by requiring the associated weights to sum to one.

For example, H(Rl) A(RI) + H(R2) A(R2) i.

44

TARGET T1

T2 (negative)

A

REPORT RI -4p, C

R2 (negative) D I o
L V I

.,., B

TWO
DISTRIBUTIONS FUSION

RESULT

FIGURE 9 INTERSECTION FUSION OF TWO DISTRIBUTIONS WITH

NEGATIVE WEIGHTS

Since there are 2 polygons in each input distribution, there

are 4 polygons in the output distribution. These polygons are denoted

A through D in Figure 9 and are the result of the following intersections:

A = RI * TI

B = R2 * TI (46)

C = R1 * T2

D = R2 * T2

The weights for Polygons A through D are found by using Eq.

(43):

P(A) = K G H(Rl) H(TI) A(A)

P(B) = K G H(R2) H(Tl) A(B)

P(C) = K G H(R2) H(T2) A(C) (47)

P(D) = K G H(R2) H(T2) A(D)

Substituting Eq. (45) into Eq. (47), the weights are seen to be propor-

tional to the areas:

45

:LI

P(A) = Z A(A)

P(B) = -Z A(B)

P(C) = -Z A(C)
(48)

P(D) = Z A(D)

where the positive constant, Z, is the magnitude of the height of each

polygon:

Z = K G / ([A(RI) - A(R2)] [A(TI) - A(T2)]) (49)

Since the weights must sum to one, Z is also given by:

Z = 1 / [A(A) - A(B) - A(C) + A(D)] (50)

These two equations for Z may be used to derive the normalization con-

stant, K.

Summarizing, Polygons A and D have positive height, Z, and

Polygons C and B have negative height, -Z (negative polygons are shown

by dashed lines on Figure 9). Therefore, by stacking the polygons on

top of each other, the probability density adds and subtracts, and as a

result, it is positive in only the two small squares shown in Figure 9.

This is, of course, the intuitive answer obtained by visually analyzing

Figure 9. Other cases can be imagined that are not at all intuitive.

Then the power of the algorithm comes into play.

3. Program Code

Table 5 shows the section of code in program POL that controls

the calculation of multipolygonal fusion distributions. The operator

chooses one of two fusion options: intersection (KL = 2) or negative

intersection (KL = 4). The operator also inputs the indices (L,M,N) of

the "P" report distribution, and the indices (L,M,N2) of the "Q" target

distribution. The J-limits (JPl,JP2) and (JQI,JQ2) define the polygons

in the P and Q distributions.

The DO-249 loops set up an outer product of P-polygons and

Q-polygons. For a particular pair of polygons, JP and JQ, the IUCALC

46

Table 5

FUSION ALGORITHM1

::FUSION (INTERSECTION, UNION, AND NEGATIVE INTERSECTION)
230 KL=2 $00 TO 241
235 KL=1 $00 TO 241
240 KLu4
241 JP1sJA(L.MN)

JP2=JB(L,M, N)
JO) zJA(L,M, N2)
J02-JB(L.M, N2)
JJ-O
DO 249 JPzJPIJP2
DO 249 JO=JQ1,JG2
CALL OAK(KLJPJQ,IA,IBX.Y,XW,YWIW,JMAX)
IF(JMAX)255. 249,243

DO 246 JO=1,JMAX

IO:IW(1,JO)
IM=~IW(2* JC)
DO 246 1=1,I1
XS(I)=XW(1+10)

246 YS(I)=YW(I+IO)
1m2 IM+1
XS(Im)zXSC 1)
YSC Im).YS(1)
CALL VEC(1,IM,XS.YS)
JJzJJ+i
CALL PUTCL,M.N3,JJ,IMXS,YS.IAIB,JA,JB4J.X,Y,ILA.JLA)

248 P(J)zHPQmAREAC(WYW,IW,JO)
249 CONTINUE

N=N3
0O TO 185

185 J1-JA(L,M,N)
J2=JS(LM,N)
CALL NORM(J1.J2,P)

186 CALL MOMCJ1,J2,IA,IB,X,YPj1,EXEY,EXX,EYY,EXY,XCEN.YCEN)
IF(E)X.GT.0..AND.EYY.GT.0.) GO TO 187
WR ITE(6,*25)

C ENOFILE 6
WRITEC 6.25)

25 FORMAT(sNEGATIVE VARIANCE*/)
GO TO 100

187 CALL EIGEN(EXX.EYYEXYR1,R2,D1,D2)
CALL SAVECLM,N,EX,EYR1,R2.01,D2,EXX.EYY,EXY.SE,KE.KLA)
INPUT(L,M,N)n.T.
WRI TE(6, 28)
WRITECS, 28)

C ENOFILE 6
WRI TECS, 28)

28 FORMAT(wSLIN I*)
GO TO 100

47

package is called through the interface subroutine, OAK. JMAX is checked
rto see how many polygons are returned; if there are no polygons, then a

new pair of input polygons is processed. If there are resultant polygons,

then the heights of the input polygons, JP and JQ, are found and multi-

plied together.

The DO-248 loop is over each one of the new polygons resulting

from the intersection or negative intersection of polygons P and Q.

First, the vertex points of the new polygon are read iato arrays XS and

YS and the redundant vertex points are added. Then, subroutine VEC is

called to draw the new polygon on the display. Subroutine PUT is called

to save the polygon in a new distribution with indices (L,M,N3). The new

polygon is the JJ-th polygon in the distribution. The arrays IA, IB, JA,

JB, X, Y are updated to reflect the addition. The last action of the

DO-248 loop is to calculate the (unnormalized) weight of the new polygon.

All polygon pairs are processed and the new distribution is completed

when the DO-249 loops are finished.

After the new distribution is created, subroutine NORM is

called to normalize the weights so that they sum to one. Subroutines MOM

and EIGEN are called to calculate statistical parameters (see Section Ill-A)

so that they may be saved by calling subroutine SAVE.

D. Conditional Probability Algorithm

Before using the fusion algorithm, a decision must be made as to

which target distribution should be fused with the report distribution.

The "conditional probability algorithm" can help make that decision. The

idea is to calculate the likelihood of each target distribution with

respect to the report distribution and then choose the target with the

maximum likelihood. Figure 10 illustrates this idea. The report is as-

sociated with Target A because its likelihood is higher than that of

Target B.

48

9(R/TAI 0.56

TARGET A ."

~.TARGET B

...

REPORT R
g(R/T 8 B 0.27

FIGURE 10 TARGET LIKELIHOOD

1. Program Logic

The conditional probability, g(R/T), is the probability of

event R, given target T. It is computed by finding the average value of

the likelihood function, g(R/x,y), assuming that the target probability

density is given by f(x,y/T). Thus, the conditional probability is an

integral over all xy-space:

g(R/T) = ff(R/x~y) f(x,yIT) dx dy .()

The multipolygonal representations of g(R/x,y) and f(x,y/T) were pre-

viously given in Eqs. (34) and (35).

The derivation of an expression for g(RIT) can be simplified

by noting from Eq. (30) that the above integrand is just f(x,y/T')/K.

Then, by using Eq. (41), the xy-integration is simple because it involves

a sum of uniform density functions; the result is:

49

°°°° •

g(R/T) = P(Tjk n) / K (52)

j k n

This reduces to the desired expression:

g(R/T) = G H(R.) H(Tk) A(R*Tk) (53)

j k

where G is a positive constant, H(R.) is the height of polygon R. (as

defined by Eq. (44)), H(Tk) is the height of polygon Tk, and A(R*Tk) is

the total positive area of the polygons resulting from the intersection

of polygons R. and Tk .j

For g(R/T) to be a conditional probability, the constant, G,

must be defined such that g(R/x,y) is between 0 and I inclusive. The

function g(R/x,y) is then the probability of the event R, given that

the target is at point (x,y). For example, if R is the report of a de-

tection event, then g(R/x,y) is the probability of detection, given that

the target is at (x,y). If R is the report of a location measurement

(latitude-longitude, range, bearing, etc.), then g(R/x,y) is the proba-

bility of the measurement occurring, given that the target is at (x,y).

2. Example of Conditional Probability

The example in the previous section (the rectangular annuli,

Figure 9) is continued to demonstrate the calculation of conditional

probability. Equations (45) and (46) are substituted into Eq. (53) and

the result is:

g(RIT = c A(A) - A(B) - A(C) + A(D)g(R/T) = G [A(Rl) - A(R2)] [A(TI) - A(Tl)] (54)

This is the likelihood of target T, with respect to report R. The result

is more easily interpreted if the constant, G, is set equal to the shaded

report area (see Figure 9):

G = A(Rl) - A(R2) . (55)

50

The assumption is that if the target is in the shaded report area, then

there is a 100-percent chance that the location measurement occurs. With

G so defined, the likelihood--Eq. (54)--becomes a conditional probability.

It is just the ratio of the area of the two small squares, A(A) - A(B) -

A(C) + A(D), divided by the area of the target annulus, A(TI) - A(T2).

In other words, the probability of the target being in both the report

and target areas, given that it is in the target area, is the ratio of

the two areas--again, an intuitive result.

Figure 11 shows a second example of a problem in which the con-

ditional probability algorithm would be useful. Instead of a localiza-

tion report likelihood function, a search pattern likelihood function is

defined. If the target is inside the small dotted polygon, then there 4
is a 100-percent probability of detecting the target. If the target is

inside the large dotted polygon but outside the small dotted polygon,

then there is a 50-percent probability of detecting the target. The con-

ditional probability of detection, g(R/T), given a target distribution

(the three ellipses), can then be computed by using Eq. (53).

3. Program Code

Table 6 shows the section of code used to calculate conditional

probabilities. The operator inputs the indices of the P-distribution

(L,M,N) and the Q-distribution (L,M,N2). The conditional probability is

the probability of P, given Q.

The DO-254 loops set up an outer product of P and Q polygons,

JP and JQ. Subroutine OAK returns a set of polygons that are the result

of the intersection of polygons JP and JQ. If there are polygons in the

intersection (JMAX positive), then the heights of the input polygons,

JP and JQ, are found. Function AREA is used to calculate the area of

each polygon in the intersection; and the product of the heights and the

area is summed in the DO-252 loop.

Once all of the polygon pairs are intersected, the resulting

sum, PROB, is divided by the magnitude of the height of the first poly-

gon in the P-distribution; thus, the G-factor [see Eq. (53)] is a

51

~ -

PROBABILITY
SEARCH OF

PATTERN 50% DETECTION

TARE

g(R/T) =0.62

FIGURE 11 PROBABILITY OF DETECTION

reciprocal height. For single-polygon likelihood functions, this scheme

is equivalent to assuming a 100-percent probability of receiving the

localization report, conditioned on the target being at an xy-point in-

side the polygon. For multipolygonal likelihood functions, this scheme

is not a very good one. What is needed is a simple algorithm to find

the maximum height of a likelihood function when G = i. Then a new G-

factor can be defined so that the maximum height is equal vo an input

probability, such as 100 percent. The maximum-height algorithm has not

been developed yet.

52

\I
A .--

Table 6

CONDITIONAL PROBABILITY ALGORITHM

33

mu CONDITIONAL PROBABILITY
250 PRO8BO.

JPlaJA(LMoN)
JP2"JB(L,M,N)
JQI JA(L,M, N2)
J02=JB(LM, N2)
DO 254 JP-JP1,JP2
00 254 JQuJQJQ2'
CALL OAK(2,JPJQ,IAIB,XYXW,YW,IW,JMAX)
IF(JMAX)255,254,251

251 HPQxH(JP)*H(JQ)
DO 252 JOzI,JMAX

252 PROB=PROB+HPQsAREA(XW,YW. IW, JO)
254 CONTINUE

PROB=PROB/ABS(H(JP1))
WRITE(6,34) N,N2,PROB
WRITE(S,34) N,N2,PROB

34 FORMAT(*PROB OF s,12,* GIVEN a,12,x s.,F5.2)
GO TO 100

255 WRITE(6,35) JMAX
WRITE(8,35) JMAX

35 FORMAT(*IUCALC ERROR *,13)
GO TO 100

E. Prediction Algorithm

A "prediction algorithm" was developed to move target uncertainty

areas in time. A multipolygonal target position distribution, (l,M,N),

is assigned a multipolygonal velocity distribution, (2,M,N). The algo-

rithm calculates a predicted position polygon for each polygon in (I,M,N)

based on each polygon in the velocity distribution (2,M,N). Furthermore,

a predicted velocity distribution is calculated.

1. Program Logic

a. Predicted Position Polygons

Recall that the velocity distribution, (2,M,N), when de-

fined with respect to a position distribution, (I,M,N), represents all

possible positions of the centroid of the position distribution at the

next time step, M + 1. Consequently, all possible positions at time

step M + i of the centroid of any polygon, P, in the position distribu-

tion are represented by a translation of said velocity distribution.

53

This translation is determined by adding to all the vertices of each

polygon in (2,M,N) the vector determined by subtracting the centroid of

the position distribution (I,M,N) from the centroid of the position poly-

gon P. That is, if V. is a polygon in velocity distribution (2,M,N) with

vertices given by vij, and S is the centroid of position distribution

(I,M,N), and p is the centroid of polygon P, then the vertices of the

translated polygon Vi(p) are given by:

v. (p) = v* + p - S, for all j. (56)

Similarly, if p is any point of positive information in position polygon

P, all possible positions of p at time step M + I are represented by

translating the velocity distribution (2,M,N) by the vector determined

by subtracting S from p. The vertices of this translated distribution, 4
[Vi(p)], are given by v ij(p) = vi + p - S, for all i and j.

This argument is sufficient to deduce the predicted posi-

tion polygon defined by a position polygon, P, and a velocity polygon,

V, and is valid for negative as well as positive information polygons.

The predicted position polygon thus derived is always a positive informa-

tion area. In the context of this argument, however, negative information

polygons must be interpreted in terms of positive information. That is,

a negative information polygon has no interior; it consists solely of a

boundary of positive information. Moreover, a negative information area

can exist only when enclosed by a positive information area. Thus, the

predicted position polygon determined by P and V is the union of the

V(p) over all p in P:

(UV(P))
I.

One can visualize the predicted position polygon as constructed by the

following process. The centroid, v(p), of the translated velocity poly-

gon V(p) is determined. The position polygon, P, is rigidly translated

to have its centroid at v(p). The predicted position polygon then is

the figure resulting when the velocity polygon is rigidly translated to

54

ki ..

have its centroid successively at each point of the translated position

polygon. It is not hard to prove the equivalence of

U V(p) to U P(v),Pep veV(p)

where P(v) is the rigid translation of the position polygon that has its

centroid at v. If the vertices of P are given by pi, the vertices of

translated polygon P(v) are given by:

p.(v) = p. + v - p, for all j (57)

It was conjectured and then proved that the algorithm

described below computes the predicted position polygon, given a position

polygon, P, and a velocity polygon, V.

The Exact Algorithm. The translated velocity polygon V(p)

is first computed. The vertices of V(p) are given by Eq. (56), and the

centroid of V(p) is given by v(p) = v + p - S, where v is the centroid

of V. Subsequently, the translated position polygons P(v.(p)) are deter-

mined for all vertices, v.(p), of the velocity polygon. The vertices of

JJpolygon P(v.(p)) are given by Eq. (57)--that is, p.(v (p)) = p. + v (p)

- p. The centroid of P(v.(p)) is v.(p). A parallelogram is generated
J

corresponding to each pair of consecutive vertices, pi and pi~1 ' of posi-

tion polygon P, and each vertex, vj, of velocity polygon V(p). Thus,

for each pair of i and j indices, the parallelogram consists of vertices
Pi(vj) and Pi+l (v) of polygon P(v.), and vertices pi+l (vj+l) and

Pi(vj+l) of polygon P(vj+l). Then the union of all the P(v.) and all

the parallelograms is computed iteratively (see Figure 12).

When the position polygon and velocity polygon represent

positive information areas, the predicted position polygon is all the

area surrounded by the outer boundary of the union, including the outer

boundary. When either the position polygon or the velocity polygon (but

not both) represent negative information, the predicted position polygost

is the union. In this case, a predicted negative information area need

55

- i"

V

POSITION POLYGON
REPEATED AT EACH PARALLELOGRAM

VERTEX ELEMENT/\
/\

/ WVLOCITY \
/ POLYGON

FIGURE 12 GRAPHIC OUTLINE OF EXACT ALGORITHM

not exist. When the union has an inner boundary, the area enclosed by

the inner boundary is the negative information-tea (see Figure 13p). -..- ..

When there is no inner boundary, the negative information area does not

exist. When both position polygon and velocity polygon represent nega-

tive information, it can be proven that the predicted position polygon

generated by them is a subset of the predicted position polygon generated

by the positive information position and velocity polygons that enclose

them.

The exact algorithm is based on complete enumeration. It

generally requires that (MI+l) • M2 unions be performed, where Ml and M2,

respectively, are the number of distinct vertices in the position and

velocity polygons. Algorithms to compute the predicted position polygon

that are more efficient, though less obvious, than the exact algorithm

56

=K

a) INPUT POSITION DISTRIBUTION (left polygon) AND INPUT VELOCITY
DISTRIBUTION (quadrilaterals). THE INNER QUADRILATERAL OF THE
VELOCITY DISTRIBUTION IS A NEGATIVE INFORMATION AREA

1b) PREDICTED POSITION DISTRIBUTION (largest polygon--a positive information
area; smallest polygon--a negative information area) AND PREDICTED VELOCITY
DISTRIBUTION (right pair of quadrilaterals)

FIGURE 13 EXAMPLE OF TRIANGULAR POSITION DISTRIBUTION AND
QUADRILATERAL VELOCITY DISTRIBUTION PREDICTION

57

were expected to exist. A much more efficient, but heuristic, algorithm

has been developed (based on study of the exact algorithm) to compute

the predicted position polygon determined by convex positive information

position polygon P and convex or nonconvex positive information velocity

polygon V. It does not appear applicable to negative information polygons.

This algorithm is described in the following paragraphs.

The Quick Algorithm. The algorithmr assumes that the

velocity and position polygons have vertices ordered in the clockwise

direction. The translated polygon V(p) is first computed. A vertex

known to be on the boundary of the predicted position polygon is selected.

(Such a vertex is the northernmost vertex of the position polygon when

translated so that its centroid is at the northernmost vertex of the poly-

gon V(p).) Suppose the last vertex selected for the predicted position

polygon corresponds to a vertex--say, with index k--of the position poly-

gon translated to have its centroid at a vertex, vi, of polygon V(p).

The equation of this vertex, Pk(v), is given by Eq. (57), specifically

Pk(Vj) = Pk + v. - p. Usually the next vertex of the predicted position

polygon is given by either the vertex with index k + I of polygon P(v.),

Pk+l (V), or the vertex with index k of polygon P(vj+l) , Pk(vj+l). The

oriented area of the triangle defined by the three points Pk(vj), Pk+l(vj),

and Pk(vj+l) is computed. [It is assumed that a triangle with vertices

ordered in a clockwise direction has positive area (refer to Ill-A).]

When the area of the triangle is strictly positive, the next vertex of

the predicted position polygon is usually pk+l(vj). When the area is

strictly negative, the next vertex is usually Pk(vj+l). When the area

is zero, either vertex will usually do. Vertices continue to be chosen

in the manner described above until the first vertex selected is chosen

again. The algorithm ia this way determines a polygon, U, consisting

of points that usually are vertices of the predicted position polygon.

It has been shown that sometimes some point selected in

this manner is actually in the interior of the predicted position poly-

gon. Although this is an infrequent occurrence, a further procedure of

the algorithm was developed to replace such interior points with the

58

proper vertices. This procedure is to replace the polygon U, with the

union of U and all the P(v.). Thus, the algorithm yields the final re-J L

suit:

U U (U P(v.))J J

for the predicted position polygon. The heuristic result compares very

well to the result computed by the exact algorithm.

The predicted position polygon computed by the above

methods is stored as a polygon in distribution (I,M+I,N).

b. Predicted Velocity Polygons

The following algorithm provides the logic for the compu-

tation of the predicted velocity distribution (2,M+I,N). The algorithm

determines the time step, M., of the most recently input velocity distri-

bution associated with target N. The predicted velocity distribution is

then computed by translating velocity distribution (2,Mo,N) by the vector

derived by subtracting the centroid of distribution (I,MoN) from the

centroid of (I,M+I,N). If V. is a polygon in velocity distribution
J

(2,MoN), with vertices given by vij, if S and S are the centroids of

distributions (1,MN) and (1,M+I,N), respectively, then the vertices

of the predicted velocity polygon determined by V. are given by

vij(S I) = vi! + S- S (58)
ij 1 0

2. Examples of Prediction

Figure 14 illustrates the evolution over one time step of an

elliptical position and velocity distribution, Figure 14(a). The pre-

dicted position distribution is the large elliptical polygon in Figure

14(b). The predicted velocity distribution is also elliptical [the

rightmost polygon in Figure 14(b)].

Figure 13 shows the evolution over one time step of a triangu-

lar position distribution and a velocity distribution composed of nested

59

(a) INPUT POSITION DISTRIBUTION (left polygon) AND
INPUT VELOCITY DISTRIBUTION (right polygon)

(bi PREDICTED POSITION DISTRIBUTION (largest polygon) AND
PREDICTED VELOCITY DISTRIBUTION (right polygon)

FIGURE 14 EXAMPLE OF ELLIPTICAL POSITION AND VELOCITY
DISTRIBUTION PREDICTION

60

quadrilaterals, Figure 13(a). The inner quadrilateral is a negative

information area. At time step 2, Figure 13(b), the predicted position

distribution has a positive and a negative information area. The positive

information area is the pentagon and the negative information area is

the smallest quadrilateral within it.

3. Program Code

Table 7 shows the section of code in program POL that controls

the calculation of predicted position and velocity distributions. The

terminal operator inputs M, the time step from which the prediction is

calculated, and N, the distribution number.

The screen is erased, then subroutine DRAW is called so that

the position distribution and velocity distribution that are input to

the prediction algorithm can be redrawn. If land masses have been defined

(that is, when LAND = TRUE), subroutine VEC is called so that the land

masses can be redrawn.

Subroutine MOVMENT is called to calculate the predicted posi-

tion distribution. Subroutine MOVECEN is called to calculate the pre-

dicted velocity distribution. When an error is detected by subroutines

MOVMENT or MOVECEN or any subroutines called by them, control automati-

cally returns to label 100 of the main program POL.

a. Position Prediction

Subroutine MOVMENT calls subroutines CONCLDE, CUMUN,

NUCUMUN, SELECT, UPDATE, and VEC. Its input parameters are: M, N, JA,

JB, X, Y, IA, IB, P, XCEN, YCEN, XW, J, ILA, JLA, SE, KE, KLA, H, LAX,

LAY, LIA, LIB, LAN, LAND, LN, LE, LS, LW, INC, CLOSE. The arrays XW and

YW are work areas. The remaining parameters are as defined in Sections

II-B and II-C. The output parameters are JA, JB, X, Y, IA, IB, P, XCEN,

YCEN, J, IA, JLA, SE, KE, KLA, and H.

Subroutine MOVMENT first determines the time step, Ml,

for which the predicted position is computed. In fact, Ml = M + 1. The

61

/ w

Table 7

PREDICTION ALGORITIDhI

::PREDICTION ALGORITHM
500 CONTINUE

Ml =M+l
WRI TEC 8,48)
WRITE(6,48)

48 FORMAT(*SERA 0')
WRI TE(8, 50)
WRI TE(6, 50)

30 FORMAT(ZSLIN 4s)
CALL DRAWC1,.N,IA,IB,JA,JBX,Y,P)
CALL ORAW(2.M,N,IA,IB,JA,JB,X,Y,P)
IF(.NOT.LAND) GOTO 700
WRI TE(6, 55)
WRITE(8,55)

55 FORMAT(*SLIN 8*)
LAN=LJB(11 1)
DO 600 Jml,LAN

I 1=LIA(J)
I 2=LIB(J)
CALL VEC(IIA2,LAX.LAY)

600 CONTINUE
700 CONTINUE

WRI TEC 6,28)
C ENOFILE 6

WRI TEC 8,28)
CALL MESSAGC(7HPOL .7HMOVMENT)
CALL MOVMENT(M,N,JA,JB,X,Y, IA, IB,P,XCEN,YCEN,

S)(W,YW,J, ILA,JLA,FLAGSE,KE,KLA,HLAX,LAYLIA,LIB,
S LAN,LAND,LN,LE,LS,LW, INC,CLOSE)
CALL MESSAGA(7HPOL
IF(.NOT.FLAG) GOTO 100
CALL MESSAGC(7HPOL ,7HMOVCEN
CALL MOVECEN(M,N,JA,JB,X,Y,IA.IB,P,SE,KE,KLA,

S)(W,YW,J, ILA,JLAXCEN,YCEN,H,LAX,LAY,LIA,LIB,
S LAN,LAND,LN,LE,LS,LW, INPUT,COUNT,FLAG)
CALL MESSAGA(7H-POL
GOTO 100

DO-1.000 loop is over each polygon in thle input ye 1locity di. stribu tion,

(2,M,N), While thle 1)0-900 loop) is over each pol1ygon in thle input position

distribution, (1,M,N).

For each exccution of thle 1)0-900 loop), a transltat ion of

tile velocity Polygon is Com1pUL td with re~spect to the. position polygon

and stored in arrays XC and YC, redundant vecrtex points included. Tile

weights of thle velocity and pus itionl polygons arc. eva lua Ied in order to

determine Whether posit ive or neLgal ive information areas are rc(prc(s01ntcd

by them. When two posit ive in -orlmti on a rca Is are i nd ic atcd , suibrou Iinc (

02

NUCUMUN or subroutine CUMUN is called at operator option. When one nega-

tive information area is indicated, subroutine CUMUN is called. When two

negative information areas are indicated, no further operation in the

DO-900 loop is executed.

Subroutine NUCUMUN performs the heuristic quick algorithm

(refer to Section III-E-l-a) to calculate the predicted position polygon.

NUCUMUN assumes that the vertices of the input polygons are in clockwise

order. NUCUMUN calls the function NORTH, which calculates the index of

the most north vertex of an input polygon; the function AREA, which cal-

culates the area of an input polygon using the triangle-area method; and

subroutine PREIU. The input parameters of NUCUMUN are:

NGONI The polygon number of the position polygon

NGON2 The polygon number of the velocity polygon

IA The array of vertex-start indices

IB The array of vertex-stop indices

X The x-coordinates of all polygons

Y The y-coordinates of all polygons

XCEN The array of x coordinates of polygon centroids

YCEN The array of y coordinates of pulygon centroids

PGX The x coordinates of the translation of the velocity

polygon with respect to NGONI

PGY The y coordinates of the translation of the velocity
polygon with respect to NGONI.

Certain scratch arrays are passed to NUCUMUN for work areas. These are

XW, YW, IW, XS, YS, IS, and WK. The output parameters of NUCUMUN are:

FLAG = FALSE The signal that NUCUMUN or IUCALC has abnormally
terminated processing

RX The array of x coordinates of the predicted position
polygon

RY The array of y coordinates of the predicted position
polygon

IRI The number of distinct vertices in the predicted

position polygon

JMAX The number of resultant polygons (including zero)
computed by IUCALC or an error flag indicating that
IUCALC has abnormally terminated processing.

63

The arrays PARX and PARY contain the x coordinates and y coordinates,

respectively, of triangles, the signs of whose areas determine the next

vertex.

Subroutine NUCUMUN first calls function NORTH to compute

the most north vertex in PGX, which is stored in NONGON2, and the most

north vertex in NGONI, which is stored in NONGONI. Using this informa-

tion, the starting vertex on the boundary of the predicted position poly-

gon is then determined and stored in both (RX(l), RY(l)) and (PARX(l),

PARY(1)). The formula for this vertex is given by Eq. (57). The DO-2999

loop determines the two candidates for the next vertex on the boundary.

The first candidate (the next vertex of NGON1 translated to the vertex

of NGON2 associated with the last vertex selected for the boundary) is

stored in (PARX(2), PARY(2)); the second candidate (the same vertex of

NGON1 translated to the next vertex of NGON2) is stored in (PARX(3),

PARY(3)). The formula for these vertices is given by Eq. (57). The

area of the triangle defined by the arrays PARX and PARY is then evalu-

ated and stored in A. When A is close to zero, the two candidates are

collinear. In order that the next vertex be as far from the last one as

possible, the two distances D2 and D3 are computed. D2 is the distance

between the last vertex selected and the first candidate; D3 is the

distance between the last vertex selected and the second candidate. The

first or second candidate is selected, depending, respectively, on

whether D2 or D3 is greater. When A is positive and not close to zero,

the first candidate is selected. When A is negative and not close to

zero, the second candidate is selected. The vertex selected is stored

in the next position of arrays RX and RY. The DO-2999 loop terminates

normally when the starting vertex is selected as the next vertex. In

this case, the DO-5000 loop is executed. This loop successively computes

che union of NGONI translated to each vertex of NGON2, with the polygon
in arrays RX and RY. This is done by repeated calls to PREIU. If no

error is detected by PREIU, the final result is the boundary of the pre-

dicted position polygon. It is stored in the arrays RX and RY, and then

control returns to MOVMFNT. An abnormal termination of the 0-2999 loop

64

results in an error message with control returning from NUCUMUN to label

100 of the main program POL.

Subroutine NUCUMUN provides a quick method of getieriffng

the predicted position polygon. It is a heuristic method, however. When

this algorithm is applied to nonconvex position polygons, the predicted

position polygon it calculates is not correct in all particulars. Errors

in NUCUMUN calculations result in the generation of polygon-like figures

where sides intersect at interior points. An example of this is shown

in Figure 15. The operator can avoid this situation by using NUCUMUN only

when the input position polygon is convex. When questionable NUCUMUN

results are generated, the code allows the operator to recalculate the

predicted target distribution using subroutine CUMUN.

To generate the predicted position polygon, subroutine

CUMUN uses a method that has been proved correct. This method, however,

requires many more calculations than NUCUMUN to generate the predicted

position polygon.

Subroutine CUMUN performs the exact algorithm (refer to

Section III-E-l-a) to calculate the predicted position polygon. CUMUN

calls the function COLL, which determines whether four vertices computed

by CUMUN (whose x and y coordinates are stored, respectively, in arrays

PARX and PARY) form a parallelogram, and it also calls subroutine PREIU.

The input parameters of CUMUN are exactly the same as the input parameters

of NUCUMUN. The scratch arrays passed to CUMUN for work areas are XW,

YW, IW, WK, RX, RY, and IR. The output parameters of CUMUN are XS, YS,

IS, FLAG, and JMAX. FLAG and JMAX are the same as in NUCUMUN. For the

remaining output parameters we have:

XS The array of x coordinates of the resulting pre-
dicted positive information area

YS The array of y coordinates of the resulting predicted
positive information area

IS The integer array that contains the index of the

start of each polygon and the number of vertices
of each polygon in the predicted positive informa-
tion area.

65

P - - - - - - -

FIGURE 15 ERRONEOUS NUCUMUN RESULT

The DO-1500 loop of subroutine CUMUN is over the number

of distinct vertices in NGON2. When the DO-1500 loop is executed the

J-th time, NGONI is translated so that the translation's centroid is the

J-th vertex of NGON2. The translation is stored in arrays XW and YW,

redundant vertex not included. The formulas for the vertices of this

polygon are given by Eq. (57). The DO-000 loop is over the number of

distinct vertices in NGONI. When the DO-1000 loop is executed the I-th

time, four vertices are computed. Two vertices are vertices I and I + i

of NGONI translated to have its centroid at vertex J of NGON2. Two ver-

tices are vertices I + 1 and I of NGONI translated to have its centroid

at vertex J + I of NGON2. The x and y coordinates of these vertices are

stored, respectively, in PARX and PARY. Function COLL determines when

the points in PARX and PARY define a parallelogram, in this case COLL =

FALSE. When PARX and PARY define a parallelogram, the union of the

parallelogram and the polygon currently stored in arrays XW and YW is

computed by a call to subroutine PREIU. After the 1)-1000 loop completes

processing, and if the DO-1500 loop is in its first iteration, the con-

tents of arrays XW and YW are transferred, respectively, to arrays RX

and RY. After the DO-1000 loop completes processing and for all itera-

tions of the DO-1500 loop except the first, the union of the polygon

stored in arrays XW and YW and the polygon stored in arrays RX and RY

is computed by a call to subroutine PREIU. When the)-1500 loop completes

66

processing, the final result is stored in XS, YS, IS, and control re-

turns to MOVMENT.

During the execution of subroutine CUMUN, problems are

sometimes encountered. The exact algorithm that CUMUN implements re-

quires that frequently the union be computed between two polygons having

two or more vertices in common. Erroneous results have been generated

by the IUCALC subroutines, which are used to compute the unions in this

algorithm. IUCALC may generate polygon-like figures where sides inter-

sect in interior points as exhibited by Figure 16. Or it may generate

figures with coinciding sides as exhibited by Figure 17. Investigation

seems to implicate the routine, ENSYD2, which determines when a point is

inside a polygon. It was discovered that this routine has limited appli-

cation because it must assume that the point is on no ray coincident with

a side of the polygon.4 A condition that is necessarily unsatisfied by

the algorithm using it. At this time the problem remains uncorrected.

When control returns from CUMUN to MOVMENT, MOVMENT calls

subroutine SELECT. Subroutine SELECT, depending on the value of K, ex-

tracts a polygon from arrays XS, YS, and IS and stores it in arrays XPC

and YPC. The input parameters of subroutine SELECT ar, K, JMAX, XS, YS,

IS.

When K = -1, the polygon representing the outer boundary

of the positive information area is selected; when K = -2, the polygon

representing the inner boundary of the positive information area is se-

lected, if it exists. The parameters JMAX, XS, YS, IS are defined as in

CUMUN. The output parameters are K, XPC, YPC, and ICI. The signal thi t

the inner boundary of the positive information area was to I, selected,

but that it did not exist, is K = 0. When a polygon is selected from XS,

YS, and IS, its x and y coordinates are stored, respectively, in arrays

XPC and YPC. The variable ICI contains the number of distinct yertices

in the polygon.

When control returns from subroutine SELECT to MOVMENT,

but no polygon was selected (that is KAY = 0), no further operation in

the DO-900 loop is executed. When control returns from SELECT to MOVMEN'

67

.7

21

8
3

(a) POLYGON

44

3

(b) POLYGON AND PARRALELOGRAM

4

Q,3 8

(c) ERRONEOUS RESULT

FIGURE 16 DEVELOPMENT OF ERRONEOUS IUCAIC RESULT

68

I.

FIGURE 17 ERRONEOUS IUCALC RESULT

and a polygon was selected or when control returns from NUCUMUN to

MOYMENT, MOVMENT calls subroutine CONCLDE. Subroutine CONCLDE calls the

land interaction algorithm and stores the resulting predicted position

polygon. This is discussed in a later section. When control returns to

MOVMENT and no error has been detected, an iteration of the DO-900 and

DO-1000 loops has been completed. When the DO-1000 and DO0-900 loops have

completed execution, MOVMENT calls subroutine UPDATE to compute and save

the statistics for the predicted position distribution. Subroutine

UPDATE calls subroutines NORM, MOM, and SAVE.

b. Velocity Prediction

Subroutine MOVECEN calls subroutines NEWCEN, UPDATE, and

VEC; and functions ENSYD2 and MINIMAX. Its input parameters are: M, N,

JA, JB, X, Y, IA, IB, P, SE, KE, KLA, XW, YW, J, ILA, JLA, XCEN, YCEN, H,

LAX, LAY, LIA, LIB, LAN, LAND, LN, LE, LS, LW, INPUT, and COUNT. The

arrays XW and YW are work areas. The remaining parameters are defined

in Sections Il-B and II-C. The output parameters are JA, JB, X, Y, IA,

IB, P, SE, KE, KLA, J, ILA, JLA, XCEN, YCEN, and Ht.

Subroutine MOVECEN first determines thec time step, M1,

for which the predicted velocity distribution is computed. The DO-200

69

loop determines the time step, MK, of the most recently input velocity

distribution associated with target N. If this loop is completed with

no error detected, the vector defined by the centroid of the predicted

position distribution (I,Ml,N) minus the centroid of the position dis-

tribution (I,MK,N) is evaluated and the resulting x and y coordinates

are stored in variables SEI and SE2, respectively. The DO-4000 loop is

over the polygons in the velocity distribution (2,MK,N). At iteration

Jl of the DO-4000 loop when no land is defined, control passes to label

3100 where velocity polygon J1 is translated by vector (SEI,SE2). Then

subroutine MOVECEN calls VEC to draw the translated polygon on the dis-

play. Subroutine PUT is called to store the translated polygon in a new

distribution with indices (2,Ml,N) by updating the arrays IA, IB, JA, JB,

X and Y, and the variables J, ILA, and JLA. The translated polygon is

the J-th polygon in X and Y. The weight of polygon J is set equal to

polygon 3l in the last calculation of the DO-4000 loop. Before returning

to the main program, subroutine MOVECEN calls subroutine UPDATE to com-

pute and save the statistics of the predicted velocity distribution.

The behavior of MOVECEN when land is defined is discussed in a later

section.

F. Land Interaction Algorithm

A "land interaction algorithm" was wanted that would allow target

distributions to move along or around land masses such as coastlines,

straits, and islands. The land interaction algorithm was to be used in

conjunction with the already implemented prediction algorithm. The im-

plementation of such an algorithm would provide more realistic display

of target distributions, allow the investigation of assumptions under-

lying the definition of target distributions, and show by example the

capabilities of the polygonal data structure.

Initially, the only requirement of the land interaction algorithm

was that the consequent graphic display, of target distributions inter-

acting with land, should provide reasonable suggestions for the uncertain

behavior of targets as they maneuver around land. There were thus con-

ceivably many satisfactory approaches to development of the algorithm.

70

As an introduction to the algorithm finally implemented, some approaches

to the land interaction algorithm are described. Through an investiga-

tion of these approaches, -dditional "requirements were adopted. The ap-

proaches considered are by no means exhaustive. Since the purpose of

the research was to demonstrate the feasibility of the polygonal data

structure concept, rather than to select the most appropriate models of

target motion, the algorithm implemented should not be regarded as opti-

mal. It should be regarded as an example of the types of algorithm made

possible by the use of this data structure.

As seen in the development of the prediction algorithm, in the ab-

sence of land the uncertainty characterized by the position and velocity

distribution at a specified time step completely determines position un-

certainty at the next time step. A predicted negative information poly-

gon indicates that there exists some positive area outside. That is, it

is possible that the target is on the boundary of the negative informa-

tion polygon. Thus when velocity uncertainty increases, position uncer-

tainty cannot decrease. Consequently, the ocean area included in the

predicted negative information polygon cannot increase; to do so would

indicate a decrease in position uncertainty. The approaches considered,

therefore, treat negative information polygons the same.

1. Approaches Considered for Land Interaction

a. Approaches Considered for Position and Land Interaction

Approach 1. One approach to the interaction of a pre-

dicted position polygon with land masses is to eliminate all portions cf

the polygon overlapping land. (It is clear that so long as a portion of

the corresponding velocity polygon is outside of all land masses, some

portion of the predicted position polygon will be outside of all land

masses.) Thus a predicted position polygon that overlapped a land mass

would be recomputed to be that portion of the position polygon outside

of the land. This approach makes no effort to try to account for velo-

city uncertainties introduced by the proximity of land. It seems rea-

sonable to treat positive and negative information position polygons

71

alike if this approach is used. Thus, this approach is simple to imple-

ment and comparatively economical of computer time.

Approach 2. Another approach is to treat positive and

negative information position polygons differently. A negative informa-

tion predicted position polygon overlapping land is recomputed to be that

portion of the predicted position outside land. A positive information

predicted position polygon overlapping land would be recomputed to be a

polygon overlapping no land, but close in area to the initial predicted

position polygon, and similar in appearance to those portions of the

initial predicted position polygon outside of land. One way to maintain

similarity of appearance between the initial predicted position polygon

and the recomputed polygon is to compute, for each vertex of the initial

polygon, the equation of the line through the vertex and centroid of the

polygon. Then choose as vertices of the new polygon one point from each

of the lines determined above that is a distance 6 from the corresponding

vertex. Thus the approach determines an all-ocean polygon close in area

to the initial predicted positive information polygon. This approach

attempts to account for velocity uncertainties introduced by the proxi-

mity of land by increasing the ocean area included in the predicted posi-

tive information polygon, and not increasing the ocean area included in

the predicted negative information polygon. This approach is conceptu-

ally simple. Compared to the first approach described, it is harder to

implement and has more demanding computational requirements.

Approach 3. The third approach considered also treats

positive and negative information areas differently. Negative informa-

tion predicted position polygons are treated just as in the previous ap-

proaches. Positive information predicted position polygons overlapping

land are recomputed to be a polygon overlapping no land and close in

area to the initial predicted position polygon. The requirement of simi-

larity in appearance is relaxed in this approach, however. The idea

would be to use heuristic devices, controlled by the terminal operator,

to determine the form of the recomputed polygon. The operator, in this

72

/I

approach, would control the final shape of the recomputed polygon. That

is in contrast to the previously described approaches, where the shape

of the recomputed polygon is completely 'de'teimin6l1by the initial pre-

dicted position polygon. The heuristics required by this third approach

could be difficult to implement and extreme in computational requirements.

Many other approaches can be conceptualized, but those de-

scribed above are perhaps the simplest to implement. It is interesting

to note that the ability to define and redefine target distributions,

subject only to space available, means that the terminal operator by

undertaking the computational burden (for instance, estimation of the

predicted polygon area) can approximate any of these approaches, and

furthermore that no land interaction software is then required. The

purpose of the land interaction algorithm is to free the terminal opera-

tor from this computational burden.

Approach 2 was selected for implementation because it

attempts to account for velocity uncertainties introduced by proximity

to land, yet is not difficult to conceptualize or implement.

b. Approaches Considered for Velocity and Land Interaction

Approaches similar to those considered for position and

land interaction can be used for velocity and land interaction. Two

other approaches were also considered. Those two are described below.

Approach 4. One approach to the interaction of a pre-

dicted velocity polygon with land masses is to create two copies of any

predicted velocity polygon that overlaps a land mass. These copies are

chosen so that they overlap as little as possible with land masses, but

they are the same distance as the predicted velocity polygon from the

centroid, SI, of the predicted position distribution to which the pre-

dicted velocity polygon is associated. One copy is placed on each side

of the line joining the centroid of tie predicted velocity polygon to S.

73

! [

Approach 5. Approach 5 is very similar to the preceding

one. But now the two copies are chosen so that the centroid of each copy

is not within a land mass. This approach is easy to implement and is

not computationally burdensome. Approach 5 was selected for implementa-

tion.

2. Program Logic

a. Program Logic for Position and Land Interaction

Positive Information. An algorithm was needed to recom-

pute the predicted position polygon when the predicted positive informa-

tion position polygon generated by the prediction algorithm intersects a

land mass. The recomputed polygon needed to possess the properties of

intersecting no land mass and being similar in appearance and close in

area to the predicted position polygon provided by the prediction algo-

rithm. Two iterative methods of recomputing predicted position polygons

were developed. These methods differ only in the final step. They are

discussed below. The methods determine a scale factor, a, based on the

method of Golden Section.5 Then the methods compute a polygon, Q, with

vertices qi, from a' and the vertices pi and centroid p of the predicted

position polygon provided by the prediction algorithm. The equations of

the vertices of Q are:

qi = Opi + (I - C)P (59)

At the next step, both methods compute a set of remainder polygons from

Q and the land masses. The remainder polygons are the parts of Q that

are outside all the land masses.

Method I of recomputing the predicted position polygons

computes the total area contained in the set of remainder polygons. When

the operator considers this area close enough to the area of the predicted

position polygon provided by the prediction algorithm, Method i selects

that set of remainder polygons as the recomputed predicted position poly-

wons. Otherwise, another scale factor is selected according to the

ntlhod of Golden Section, and the iterations continue. Method 2 of

74

gonerating the recomputed predicted position polygon computes the area

of the largest polygon in the set of remainder polygons. When the dis-

play operator considers this area close enough to the area of the pre-

dicted position polygon provided by the prediction algorithm, the method

selects the largest remainder polygon as the recomputed predicted posi-

tion polygon. Otherwise, another scale factor is selected according to

the method of Golden Section and the iterations continue.

Method I has the feature that multiple recomputed predicted

position polygons are frequently generated from one predicted position

polygon. Furthermore, these multiple polygons cwn be widely separated

from each other--for example, on opposite sides of a land mass. Thus,

the multiple polygons that result in certain cases are difficult to

interpret, and this proliferation of polygons creates an unnecessary

burden on the software.

Method 2 avoids this feature because only one recomputed

predicted position polygon is generated. Method 2 was the method adopted.

Negative Information. An algorithm was needed to recom-

pute the predicted position polygon when the predicted negative informa-

tion position polygon generated by the prediction algorithm intersects

a land mass. The recomputed polygon generated by the method was to be

that portion of the predicted position polygon outside land. The method

developed in the previous section is used to recompute the polygon by

setting c = i.

b. Program Logic for Velocity and Land Interaction

A method was developed for recomputing predicted velocity

polygons. The method checks each predicted velocity polygon to determine

if its centroid is contained in any land mass. When a centroid is in a

land mass, one copy of the predicted velocity polygon is placed on each

side of the line joining the centroid of the predicted velocity polygon

to the centroid of the predicted position distribution with which it is

associated, such that the centroid of each copy of not contained in any

land mass.

75

Each copy has associated with it a proportion of the

weight assigned the predicted velocity polygon generated by the predic-

tion algorithm. The proportion is specified by the operator.

An iterative algorithm is employed to first compute a

centroid of each copy outside all land masses. This algorithm is de-

scribed below. Consider the circle with center at the centroid, SI of

the predicted position distribution and radius given by the distance be-

tween S and the centroid of the predicted velocity polygon. When the

centroid of the predicted velocity polygon, (xoyo), is in a land mass,

the algorithm computes the point on the circle 10 degrees clockwise of

(xoyo). This point is checked to determine if it is contained in the

same land mass as (xoyo). If it is, the algorithm computes the point

on the circle 20 degrees clockwise of (xoyo) and this point is checked.

The algorithm continues to compute points clockwise from (x ,y) and 10

degrees apart until a point, (xl,Y1), is calculated that is not in the

same land mass as (xoyo). Then, (xl,Yl) is checked to determine if it

is contained in any other land mass. When it is not, (xlYl) is the

centroid of the clockwise copy of the predicted velocity polygon.

When (xl,Yl) is contained in another land mass, the point,

(x,y), computed by the algorithm immediately preceding (xl,Yl) is in the

same land mass as (xoyo); therefore the algorithm computes 6, the angle

separating (x,y) and (xl,Yl) divided by 10 and computes the point,

(x2,Y2) , on the circle 6 degrees clockwise of (x,y). The algorithm

checks (x2,Y2) for containment in the same land mass as (xoyo), and so

long as that is true the algorithm continues to compute points clockwise

from (x,y) and 6 degrees apart until a point is calculated that is not

in the same land mass as (xoyo). This point is then treated as (xlYl)

(see above) and the iterations continue.

The centroid of the counterclockwise copy of the predicted

velocity polygon is computed in a similar way.

76

3. Examples of Land Interaction

Figure 18 illustrates the evolution of a target distribution

over three time steps around a land mass. The position polygon at

Step 1 is the solid triangle, while velocity is given by the dotted tri-

angle. At Step 2 the position uncertainty area has evolved to the hexa-

gon. The velocity distribution has evolved to two triangles in response

to its proximity to the land mass. At Step 3, the two polygons in the

velocity distribution at Step 2 cause two position uncertainty areas to

evolve around the land mass.

Figure 19 illustrates the evolution of another target distribu-

tion near a choke point. At Step 1, the nested quadrilaterals are the

position distribution, consisting of positive and negative information

areas. The nested triangles are the velocity distribution, consisting

of positive and negative information areas. At Step 2, the position

distribution has evolved to the solid polygons. It still has a negative

information area. The velocity distribution has evolved to four tri-

angles.

4. Program Code

a. Position and Land Interaction

Subroutine CONCLDE calls the land interaction algorithm

and stores the recomputed predicted position polygon in distribution

(I,Ml,N). The predicted position polygon computed by the prediction

algorithm has ICI distinct vertices; its x and y coordinates are stored

respectively in arrays XPC and YPC. Subroutine CONCLDE first checks the

value of LAND. Only when land masses are defined is LAND = TRUE.

When no land is defined, control passes to label 900,

where the redundant vertex is added to the predicted position polygon.

Subroutine VEC is called to draw the polygon on the display. Subroutine

PUT is called to store the polygon as polygon JJ in distribution (l,MI,N)

by updating the arrays IA, IB, JA, JB, X, and Y, and the variables J,

ILA, and JA. This polygon then is the J-th polygon stored in X and Y.

The weight of this polygon is set equal to the product of the weight of

77

SLAND/
MASS/

(a) TIME STEP I

LAND
MASS/

(bi TIME STEP 2

LAND
MASS

(c) TIME STEP 3

FIGURE 18 EXAMPLE OF TARGET DISTRIBUTION EVOLUTION
AROUND A LAND MASS

78

LAND MASS 1

*X\\~LAN M~ASSMASS

(b) TIME STEP 2

t FIGURE 19 EXAMPLE OF TARGET DISTRIBUTION EVOLUTION NEAR A
CHOKE POINT

79

the generating position polygon and the weight of the generating velocity

polygon, P(J) = PP x PC. Then control returns to subroutine MOVMENT.

When land is defined, subroutine CONCLDE calls subroutine

POSINT to determine whether the predicted position polygon intersects

any land mass. POSINT calls subroutine RECTAN to compute the rectangle

circumscribing the predicted position polygon. The input parameters of

RECTAN are:

II The index of the first vertex of the polygon

12 The index of the last distinct vertex of the polygon

X The array in which the x coordinates of the polygon
are stored

Y The array in which the y coordinates of the polygon
are stored.

The output parameters of RECTAN are: 4
N The value of the largest y coordinate of the polygon

E The value of the largest x coordinate of the polygon

S The value of the smallest y coordinate of the polygon K

W The value of the smallest x coordinate of the polygon.

Thus N,E,S, and W determine a circumscribing rectangle with vertices

(N,E), (S,E), (S,W), and (N,W).

Next, subroutine POSINT initializes the variables, FIAGI

and IANINT so that they are TRUE.

The DO-1O00 loop is over the number, IAN, of defined land

masses. At the J-th iteration of the DO-1O00 loop, the rectangle circtum-

scribing the predicted position is tested for overlap with the rectangle

circumscribing land mass J. This is accomplished by evaluating function

MINIMAX. MINIMAX = TRUE only when there is no overlap between the

rectangle circumscribing polygon A and the rectangle circumscribing

polygon B. The input parameters to MINIMAX are:

N The value of the largest y coordinate in polygon A

E The value of the largest x coordinate in polygon A

S The value of the smallest y coordinate in polygon A

80

W The value of the smallest x coordinate in polygon A

LN The value of the largest y coordinate in polygon B

LE The value of the largest x coordinate in polygon B

LS The value of the smallest y coordinate in polygon B

LW The value of the smallest x coordinate in polygon B.

When MINIMAX = TRUE, the predicted position polygon does not intersect

land mass J, and no further operation in the DO-1000 loop is executed.

When MINIMAX = FALSE, an intersection with land mass J is possible;

thus, the next operation of the DO-100 loop is to test the predicted

position polygon for a nonempty intersection with land mass J. In order

to make the test, the DO-100 loop copies the distinct vertices of land

mass J from arrays LAX and LAY into XW and YW, respectively, so that

IUCALC may be called. The intersection is computed by a call to IUCALC.

When control returns to POSINT, JMAX is evaluated. JMAX = 0 indicates

that the intersection is empty, whence no further operation in the

DO-1O00 loop is executed.

JMAX > 0 indicates that the intersection is nonempty. In

this event the weights of the generating position and velocity polygon

are checked to determine if the predicted position polygon is a positive

or negative information area. In the case of a negative information

polygon, subroutine REMAIN is called. In the case of a positive informa-

tion polygon subroutine GOLDSEC is called.

Given a polygon, Q, stored in arrays RX, RY, and IR as if

output by IUCALC, subroutine REMAIN computes those portions of Q outside

all land masses. Polygon Q is computed in REMAIN from an input polygon

contained in arrays XPC and YPC; from the centroid, (XCEN, YCEN), of the

input polygon; and from a scale factor, ALPHA.

The DO-1O00 loop computes Q using Eq. (59). The DO-4000

loop is over the number of land masses. At iteration IL of the DO-4000

loop, the number, NO, of polygons currently stored in RX, RY, IR is de'-

termined. The DO-3000 loop is over NO.

At iteration IP of the DO-3000 loop, the IP-th polygon in

RX, RY, IR is tested for intersection with land mass IL. RECTAN is

81

called to compute the rectangle circumscribing polygon IP. Function

MINIMAX is applied to the rectangles circumscribing polygon IP and land

mass IL. At this point, if the polygon does not intersect the land mass,

the polygon is copied into arrays XWO and YWO by subroutine INTO and no

further operation in the DO-3000 loop is executed. If a nonempty inter-

section between the polygon and land mass is still possible, the negative

intersection of the land mass with the polygon is determined by a call

to IUCALC. If no error is detected (in fact, if JMAX > 0), the last

operation of the DO-3000 loop copies the result into arrays XWO and YWO

by calling subroutine INTO.

Next, the DO-4000 loop copies the polygons computed by

the DO-3000 loop from XWO and YWO to RX and RY, respectively. The last

operation of the DO-4000 loop transfers the index of the start of each

polygon and the number of vertices in each polygon from NUM to IR.

Thus the portions of Q outside all land masses are deter-

mined. These are called the remainder polygons, and the x and y coordi-

nates of the IP-th remainder polygon are stored, respectively, in

XWO(NUM(l,REM(I,LL)+IP)+I) and YWO(NUM(I,REM(l,LL)+IP)+I),

1 I < NUM(2,REM(I,LL)+IP).

The last operation in REMAIN computes the area of the

largest polygon in the remainder polygons. As currently implemented,

the subroutine does not incorporate the negative contribution of holes

in calculating the areas of the remainder polygons.

Subroutine INTO has as input parameters arrays XS, YS,

and IS (which are assumed to contain a set of polygons as if output by

IUCALC); and JMIN, JMAX, LL, MAXPOL, IP, and IL. Given these input

parameters, the DO-3000 loop of INTO copies polygon JO, JMIN JO <_ JMAX,

from XS and YS into XWO and YWO, respectively. The x and y coordinates

of polygon JO are stored, respectively, in XWO(NUM(I,KO)+I) and

YWO(NJM(1,KO)+I), where

1 I NUM(2,KO), REM(1,LL)+MAXPOL + 1 KO REM(1,LL) + MAXPOL +

JMAX-JMIN+I, and NUM(2,KO) = IS(2,JO).

INTO then updates NUM, REM, and MAXPOL.

82

Given an input polygon, P, contained in arrays XPC and

YPC, subroutine GOLDSEC uses the method of Golden Section to generate a

polygon Q according to Eq. (59) such that the largest remainder polygon

in Q, q*, has area close to that of the input polygon. Thus the method

of Golden Section determines an optimal scale factor. The subroutine

first computes the area, A, and the centroid, (XCEN,YCEN), of the input

polygon. The stopping criterion, ACLOS, is also computed. Subroutine

GOLDSEC returns control to POSINT whenever the area of q* is within

ACLOS of A. In order to apply the method of Golden Section, upper and

lower bounds on the optimal scale factor must be determined; thus

GOLDSEC next determines upper and lower bounds for the optimal scale

factor. The lower bound for the optimal scale factor is always one.

GOLDSEC determines the area of q* when the scale factor generating Q is 1.

This is accomplished by the first call to subroutine REMAIN. If the

stopping criterion remains unsatisfied, the DO-1000 loop is executed.

The DO-1000 loop determines an upper bound for the optimal scale factor.

At each iteration, the DO-1000 loop computes a larger scale factor, NEXT;

determines the area of the corresponding q* by calling REMAIN; and com-

pares the area to A. The iterations continue until the stopping criterion

is satisfied; or the area exceeds A, in which case NEXT is the upper

bound for the optimal scale factor and control is transferred to label

1100; or the upper limit, KAY, of the DO-1000 counter is exceeded. In

the event KAY is exceeded, the subroutine gives the operator the option

of returning to label 100 of the main program or continuing the calcula-

tion of the upper bound.

Label 1100 marks the beginning of the Golden Section

iterations. The upper and lower bounds of the optimal scale factor are,

respectively, NEXT and SCALE. The DO-3000 loop determines a new interval

containing the optimal scale factor, computes a new scale factor, deter-

mines the area of the q* corresponding to this new scale factor, and

compares this area to A. The iterations continue until the stopping

criterion is satisfied or the upper limit, KAY, of the DO-3000 counter

is exceeded. In the event KAY is exceeded, the subroutine gives the

operator the option of accepting one of the last two scale factors

83

generated, or returning to label 100 of the main program, or continuing r

the Golden Section iterations.

b. Velocity and Land Interaction

Subroutine MOVECEN calls the land interaction algorithm

and stores the recomputed velocity distribution in distribution (2,MI,N).

The DO-4000 loop is over the number of polygons in the velocity distribu-

tion. At iteration Jl of the DO-4000 loop when land is defined, the

centroid, (XO,YO), of predicted polygon Jl is computed. Then the DO-3000

loop is executed. The DO-3000 loop is over the number of land masses.

At iteration IL of the DO-3000 loop, (XO,YO) is checked for containment

within land IL. This check is accomplished by the following operations.

First a call to function MINIMAX determines whether (XO,YO) is contained

in the rectangle circumscribing land IL. When (XO,YO) is not contained

in the rectangle, no further operation of the DO-3000 loop is executed.

When (XO,YO) is in the rectangle, containment in land IL is possible.

Consequently, function ENSYD2 is called to determine if (XO,YO) is in

land IL.

If (XO,YO) is not in land IL, no further operation of the

DO-3000 loop is executed. Otherwise, two copies of polygon J1 are gene-

rated such that their centroids are not in any land mass. First, the

operator associates to each copy a proportion of the weight assigned to

polygon Jl. [CPROB(l) and CPROB(2) are the proportions associated with,

respectively, the counterclockwise and clockwise copies.] Next, sub-

routine NEWCEN is called to compute a centroid of each copy outside all

land masses. (VX(l),VY(l)) and (VX(2),VY(2)) are the centroids, re-

spectively, of the counterclockwise and clockwise copies.

Subroutine NEWCEN implements the algorithm for computing

centroids outside of land masses described in the previous section. The

DO-3000 loop is executed twice, once for each copy. The variable TIME

counts the absolute number of candidates generated for a particular copy.

When TIME exceeds COUNT, the display operator has the option of return-

ing control to label 100 of the main program or continuing the iterations.

84

The DO-2000 loop iteratively computes a candidate for the centroid (XI,YI),

and then checks it for containment in any land mass. The check is pri-

marily accomplished by the DO-100 loop. This loop also recomputes the

variables, Dl and D2, controlling the angle between successive centroid

candidates.

When control returns to MOVECEN, the DO-1000 loop is exe-

cuted. At iteration K, the DO-lO00 loop computes a copy of polygon Jl

with its centroid at (VX(K),VY(K)). After the copy is computed, VEC is

called to draw it on the display; PUT is called to store it as polygon JJ

of distribution (2,MI,N); and its weight is computed, P(J) = P(JI)

CPROB(K). After the DO-4000 loop finishes execution, subroutine UPDATE

is called to compute distribution statistics.

il

85

!4

IV POLYGON RESEARCH COMPUTER PROGRAM

A. General

This section discusses the interactive capability of the computer

program used to test the algorithms that we developed. Appendix A lists

the FORTRAN source code for Program POL. This program controls the

graphics terminal and calls algorithm subroutines. All of the subrou-

tines that we developed are in Appendix A. Figure 20 shows the structure

of the polygon research program. Appendix B lists the FORTRAN source

code for IUCALC, which was obtained from Oak Ridge National Laboratory

and modified for the CDC 6400.

B. Interactive Capability

The computer program is designed to be used in an interactive mode

on the Tektronix 4025 graphics terminal. When the binary file is exe-

cuted, the computer initializes variables, teaches the terminal certain

function keys, and draws a border around the graphics area.

First, the computer allows the operator to define land masses. The

following message is printed below the graphics area:

DEFINE LAND (Y OR N)

The computer waits for the operator to type Y (for yes) or N (for

no). When the operator types Y, the computer responds with the message:

USE LAND FILE? (Y OR N)

If the operator types Y, the computer assumes that a properly formatted

file named TAPE9 is available to be read with an unformatted READ state-

ment. If the user types N, or, after reading TAPE9 the computer prints

the message:

DEFINE LAND FROM TERMINAL? (Y OR N)

87

%I

0AREA

--4DATA

VEC
--oDRAW -CPOU

1ELLP

1EIGEN

sGET

~GET
PUT

ILANDEF -RECTAN

NMOM ---- fCENTRD

0MOVE

--1ENSYD2
-41MINIMAX ENSYD2

-eMOVECENWPUT -E'MINIMAX
-410 MOVCEN 1 PT F-0-1EIGEN

1UPDATE -- "MOM -' oCEN TR D
"SAVE -*AREA

CENTRD -loINTO"VEC -- 0GOLDSEC--=NUSCALE -WI UCA LC

L-i4'REMAIN -- @MINIMAX

POEN -- 1UCLC-WRECTAN T
-IbCONCLDE-E PIA -flMiNIMAX AREA

PUT IUCALC
ROU -OREMAIN ~MINIMAX
VEC RECTAN

POL-

---oMOVMENT COLL _-*'IUCALC rRO

CUMUN rlpPREIU C -- ELCT-----*OE
ROU wV EC

NORTH ,.. IUCALC ROU
NUCUMUN -- PREIUl-qRECOVER-

-9ROU L-~VEC :-~SELECT --- AREA

SELECT- AREA

EIGEN
t UPDATE -- * MOM -- 4CENT RD

'SAVE
---1NORM 90PJOUT

-- fiOAK - IUCALC
--oPUT

iSAVE
--- SECRF

--oVEC
-- 0WEIGHT

FIGURE 20 STRUCTURE OF POLYGON RESEARCH PROGRAM

88

7 AD-ASS? 596 SRI INTERNATIONAL MENLO PARK CA F/B 17/7

POLYGON REPRESENTATION OF TARGET LOCATION UNCERTAINTY FOR OCEAN-ETCIU)
MAY 80 L C GONEEN, .J R OLMSTEAD N000OI79C0329

UNCLASSIFIEn NL

22fllffllffllffllf

If the operator types Y, the computer permits the vertex-by-vertex input

of as many land masses as space permits. After inputting a land mass

from the terminal, the computer queries:

MORE LAND? (Y OR N)

The operator may input another land mass if Y is typed. If the operator

types N, the computer will respond with:

SAVE LAND ON UNIT 10? (Y OR N)

Typing Y will save the land masses currently displayed on the terminal

on a local file named TAPEl0. (Unless saved on a permanent file, TAPE1O

ceases to exist at the end of the terminal session.) When the computer

prints:

HOW CLOSE SHOULD BE THE DIFFERENCE IN AREAS (IN PERCENT OF
INPUT AREA) FlO.5

The operator should respond with the percent of allowed discrepancy be-

tween the area of the predicted position polygon, as computed by the

prediction algorithm, and the area of the predicted position polygon

after land interaction. The quantity is stored in CLOSE. The percent

should be expressed in F10.5 format.

Then the computer prints the following message below the graphics

area:

FUNCTION: D E R L M C I U N P S V T

and waits for the operator to respond with one of the above code letters

(followed by three (or fewer) integers (for example, D6, 1127, or V).

The code letters stand for functions that are available to the operator:

D Define a multipolygonal probability distribution.

E Draw the error ellipse associated with a distribution.

R Redraw a distribution.

L Label a distribution.

M Translate and rotate a distribution.

C Change the polygon weights of a distribution.

I Perform an intersection fusion of two distributions.

89

L IS......

U Perform a union of two distributions.

N Perform a negative intersection fusion of two distribu-
tions.

P Calculate the conditional probability of one distribu-
tion, given another distribution.

S Display the amount of space left in the distribution
arrays.

V Change to velocity space.

T Set the time step or calculate the predicted target
distribution.

In addition to the capability implied by the above letter functions, the

terminal is taught certain function keys:

PT Send the position of the cursor to the computer
and print an asterisk at the point.

] Designate the last point of a polygon (type

before using PT).

RUB OUT Erase the entire graphics area, including the
border.

! Redraw the border.

Shift ERASE Draw erase vectors.

Draw solid line vectors.

@ Draw dashed line vectors.

The remainder of this section discusses the use of the letter-functions.

1. Defining a Distribution

A multipolygonal probability distribution is defined by typing

D and the number, N, of the target distribution (N = 1, 9); for example,

D6 will define target distribution number 6. The computer then returns

the following message:

PO EL PS SE GA BO RB CZ

and the operator picks one of the above letter combinations and types it

on the terminal. The letter combinations stand for various kinds of

polygons as shown in Figure 21 and described below:

90

POLYGON ELLIPSE SLICESCO
OR S L I C E

SECTOR

CIRCLE

181 DISTRIBUTION ELEMENTS

J BEARING RANGE AND BEARING4

GAUSSIAN
APPROXIMATION CONVERGENCE

ZONES

(W PROGRAMMED DISTRIBUTIONS

FIGURE 21 DEFINING DISTRIBUTIONS

PO Arbitrary polygon that has each vertex designated by the
operator. The vertices may be entered clockwise or
counterclockwise.

EL Elliptical polygon of 16 sides. The center is designated
first, then the end of the major axis, and finally the
end of the minor axis (the direction of the minor axis is
not important, only the magnitude is used).

PS Pie slice polygon. The center point and the end of the
radius at the midpoint of the angle are designated. Then
the value of the angle is typed in.

SE Sector polygon. The center point, the end of the outer
radius, and the end of the inner radius are designated,
and the angle of the sector typed in.

GA Gaussian approximation distribution. The 2-sigma ellipse
is designated as in EL above. The distribution is a
weighted combination of the 1,2,3-sigma elliptical
polygons.

BO Bearing-only distribution. The origin and the maximum
likely range (in the direction of the bearing line) is
designated, then the bearing sigma is typed in. The

91

-7 . . . __I

computer draws the I- and 2-sigma polygons. The 2-sigma
polygon is drawn with the designated range plus 10 per-
cent. The polygons are weighted to simulate normally
distributed bearing.

RB Range and bearing distribution. The origin and the range/
bearing point are designated, then the range and bearing

sigmas are typed in. The two polygons are weighted to
represent the I- and 2-sigma contours of normal distributions
in range and bearing.

CZ Convergence zone distribution. The center and the outer

radius of the first zone is designated. The operator sup-
plies the weights for the two zones.

After designating a polygon (PO EL PS SE), the computer asks

the operator to type in a weight for the polygon. If a height is desired

instead, then the operator types in 0 and the computer will ask for the

height of the polygon. Both height and weight are relative measures and

are normalized by the computer.

Upon receiving the polygon weight the computer returns the

message:

MORE POLYGONS? (Y OR N)

If the operator wishes more polygons in the multipolygonal distribution,

then he types in Y for yes. Both the polygonal elements (PO EL PS SE)

and the pre-pregrammed distributions (GA BO RB CZ) can be used to build

complex distributions. Upon typing N for no, the computer normalizes

the weights and calculates and saves the statistics of the distribution.

When finished with these computations, the computer prints out the

normalized weight of each polygon in the distribution, prints the pre-

viously discussed FUNCTION statement, and waits for a new letter code.

The distribution is always a position distribution (L = 1) unless the

operator puts the program in the velocity mode (L = 2) just prior to

using the D-function.

2. Drawing an Error Ellipse

The 2-sigma error ellipse (a 16-sided polygon) of a multipoly-

gonal distribution is drawn by typing E and the number of the distribu-

tion (for example, E6). The distribution must have been previously

92

defined. The ellipse is centered on the mean of the distribution. If

the operator wishes the ellipse to be drawn with a dashed line, he pushes

the @ key before typing E6.

3. Redrawing a Distribution

A previously defined distribution may be drawn again by typing

R and the number of the distribution (for example, R6). This function

is useful when the display is cleared by pushing RUB OUT so that distribu-

tions can be redrawn as desired.

4. Labeling a Distribution

The order of the polygons in a distribution can be labeled by

typing L and the number of the distribution (for example, L6). The

integer labels (I for Polygon 1, etc.) are placed on the first vertex of

each polygon.

5. Moving a Distribution

A distribution may be translated and/or rotated by typing M

and the number of the distribution (for example, M6). The computer then

puts the cursor in the graphics area and two points are designated by

the operator. The first point is the point around which the rotation

takes place; it is also the start of the translation vector. The second

point is the end of the translation vector. The computer then asks for

the angle of rotation. The distribution is rotated around the first

point designated, then it is rigidly translated according to the vector.

Finally, the distribution statistics are recalculated. Although the old

points of the distribution are still in the XY-arrays, there is no

mechanism to retrieve them; only the newly moved distribution is avail-

able to the operator.

6. Changing Polygon Weights

The weights of polygons can be changed by typing C and the

number of the distribution (for example, C6). The computer asks for

93

the weight (or height) of each polygon, and when finished, normalizes

the weights and calculates the statistics.

7. Fusing Two Distributions

The fusion of two distributions into a third distribution is

performed by typing I or N and the numbers of the distributions being

fused and the number of the resultant distribution. For example, the

intersection of Distribution 4 with Distribution 6 (the result saved as

Distribution 7) is denoted: 1467. The negative intersection, 4 * 6, is

denoted: N467. If the output distribution is not designated, then the

result is put in Distribution 9.

Usually the display is cleared before typing in the fusion

function because if the input distributions are still on the CRT, then

the output polygons cannot be seen because they lie on top of the input

polygons. The program computes the vertices of the output polygons,

their weights, and the distribution statistics.

8. Conditional Probability

The conditional probability of one distribution, given another

distribution, is calculated by typing C and the numbers of the two dis-

tributions. For example, the conditional probability of Distribution 6,

given Distribution 4, is denoted: P64. The output is printed below the

graphics area and looks like the following:

PROB OF 6 GIVEN 4 = .27

The algorithm really computes a number that is proportional to the condi-

tional probability; only when the first distribution is a single polygcn

does the algorithm return a number that is always between zero and one.

9. Array Status

The memory status of the arrays can be checked at any time by

typing in S. The computer returns a message that gives the amount of

space left in the various arrays; for example:

94

mum P.....

MEMORY LEFT:

POINTS ... 1370

POLYGONS ... 195

STATISTICS ... 864

"Points" refers to the X and Y arrays; "Polygons" refers to the P, H,

XCEN, YCEN, IA, IB arrays; and "Statistics" refers to the SE array.

10. Velocity Space

A velocity distribution can be defined by typing V, and, after

the computer responds with the FUNCTION statement, typing D and the num-

ber of the distribution for which velocity is defined. The velocity dis-

tribution is defined the same as a position distribution. The polygons

that are drawn represent the uncertainty of the centroid of the position

distribution one time step into the future. The V-function can also

precede other functions. For example, to get an error ellipse of the

velocity distribution associated with Distribution 6, type V then type

E6. The program is automatically returned to position space after a

function is performed.

11. Changing Time

The time index is changed for all distributions by typing TO

and the time step desired. For example, T03 changes the time to Step 3.

The time step remains the same until changed; time is initialized to

Step 1.

12. Prediction

The predicted position and velocity of a target distribution,

N, at time step, M, are calculated by typing TNM, (N = 1, 9; M = 1, 4).

Distribution N must be defined for time step M. For example if distribu-

tion 6 has been defined at time step 2, T62 calculates the predicted

position and velocity of target 6 at the next time step, 3.

The screen is erased and the specified input distribution is

redrawn. When the predicted position polygon will be a positive informa-

tion area, the computer asks:

95

I!

CALL NUCUMUN (Y OR N).

A response of Y results in the use of the quick algorithm for generating

positive information predicted position polygons and is usually given

when the input position polygon is convex. A response of N results in

the use of the exact algorithm for generating predicted position polygons.

Upon calculation, the predicted target distribution is drawn and its

statistics are saved. The computer prints the normalized weights for

each polygon in the distribution.

96

9

REFERENCES

1. R. G. Edwards and P. R. Coleman, "IUCALC-A FORTRAN Subroutine for
Calculating Polygon-Line Intersections, and Polygon-Polygon Inter-
sections, Unions, and Relative Differences," ORNL/CSD/TM-12, Geo-
graphic Data Systems Group, Computing Applications Department,
Computer Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee (August 1976).

2. H. L. Wiener, W. W. Willman, and I. R. Goodman, "Naval Ocean-
Surveillance Correlation Handbook, 1978," NRL Report 8340, Naval
Research Laboratory (October 1979), UNCLASSIFIED.

3. C. E. Pearson, Ed., Handbook of Applied Mathematics, p. 72 (Van
Nostrand Reinhold Company, New York, New York, 1974).

4. S. Nordbeck and B. Rystedt, "Computer Cartography Point-In-Polygon
Programs," BIT, Vol. 7, 45-46 (1967).

5. W. I. Zangwill, Nonlinear Programming, p. 121 (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1969).

97

Appendix A

PROGRAM POL SOURCE CODE

A-1

PROGRAM POL(INPUT, OUTPUJT, TAPE5 I NPUT, TAPE6, TAPE8=OUTPUT, TAPE7,
$ TAPE9,TAPEIO)

LOGICAL FLAG,LAND,INPU7(2,5,9)
DIMENSION XCEN(200),YCEN(200),IA(200),IB(200),JA(2,5,9),JB(25,9),

s X(1400),Y(1400),P(200) ,H(200),SE(900),KE(2,5,9),
$ LJA(1*1, 1), LJB(I1 1*1).
s LIA(200) ,LIB(200),
s XW(200),YW(200), IW(2,20),SB(17),CB(17),XS(50),YS(50)
INTEGER COUNT
REAL LAX(1400),LAY(1400), INC,LN(200),LE(200),LS(200),LW(200)
DATA I NPUT/90*. FALSE./
DATA JNC,COUNT/0.5,1/
DATA P1/3.141592653/
DATA M,N3/1,9/
DATA ILA,JLA,KLA/0,0,0/
WRITE(6, 10)

C ENDFILE 6
WRITE(8, 10)

10 FORMAT(*$WOR 30 SGRA 2,29,2,79 $LIN 1*/
$ *$VEC 0,0 0,391 623,391 623,0 0,0*!
$ *$LEA PT *$REP 01" 13 42x/
$ *$LEA 1 93 08x/
$ *$LEA 127 "$ERA G" 13*/
S *$LEA * SVEC 0 0 0 391 623 391 623 0 0 0' 13*/

$ *$LEA 173 "$LIN E" 13*1K/
S *$LEA I "$LIN 1" 13*/
$ *SLEA @ "$LIN 2" 13*)
BB=2. *PI/16.
DO 5 1=1,17
B=B13* (I- 1) i
SB(I)SIN(B)

5 CB(IV=COS(B)
AN: 9f ANGLE
WE=9lHWEI GHT
HE" 91 IHEI GHT
SGB=9HSIG BRG
SGR=9HSIG RNG

** LAND
LAND=. F.
WRI TE(6, 60)

CENDFILE 6
WRI TE'8, 60)

60 FORMAT(*DEFINE LAND (Y OR N)*,
READ(5, 14) 0
WRITE(6, 14) 0
WHi TE(7, 14) 0
WRI TE(8, 14) 0
IF(,'.EQ.lHY) LAND=.T.
IF(.NOT.LAND) GOTO 100
CALl- MESSAGC(7HPOL ,7HLANDEF
CALL- LANDEF(LAX, LAY, LIA, LIB, LJB, LN, L.E, LS, LW,XW,YW)
WRI rE(6,28)
WRI TE(8,28)
WRI TE(6, 70)

C ENDFILE 6
WRI rE(8,70)

70 FORIIAT(*HOW CLOSE SHOULD BE THE DIFFERENCE IN AREAS (IN PERCENT*,
S * OF INPUT AREA) F1O.5z)
REAO(5,75) CLOSE

75 FORIIAT(FI0.5)

A- 3

CLOSE=C1.OSE/ 100.
WRITE(6,85) INMC, CLOSE

c ENDFILE 6
WRITE(7,85) INC,CLOSE

C ENflFILE 7
WRITEs:8,85) INC,ClOSE

85 FRMAT(*INC= *,I., CLOSE= *,G11.5)
WRITE(6,963) COUNT

C ENDFIIE 6
WRITE(7,96) COUNT

C ENOFILE 7
WRITE(8,96) COUNT

96 FORMAT(*THE NUMBER OF ITERATIONS Al-LOWED IS 1, 3,*,*)

-*FUNCTION

WRITE(6, 12)
WRITE(8, 12)

C ENOFILE 6
12 FORMAT(/*F1JNCTION: D E R L M C I U N P S V T*)

101 READ(5,14) F,N,N2,N3
WRITE(6,14) FN,N2,N3
WRITE(7,14) F,N,N2,N3
WRITEI'8,14) F,N,N2,N3

14 FORMAT(Al,311)
IF(F.EO.1HD) GO TO 110
IF(F.EO IHE) GO TO 190
IF(F.EQ.lHR) GO TO 200
IF(F.EO.1HL) GO TO 205
IF(F.EQ.1HM) GO TO 210
IF(F.E0.1HC) GO TO 220
IF(F.EQ.1HI) GO TO 230
IF(F.EO.lHU) GO TO 235
IF(F.EO.lHN) GO TO 240
IF(F.FO.lHP) GO TO 250
1F1F.FQ.1HS) GO TO 260
I F(F. NE. IHV) GO TO 105
L=2 $GO TO 106

105 IF(:FNE.1NT) GO TO 100
M N2
IF(N.EO.0) COTO 100
GOTO 500

**DEFINE PROBABIITY DISTRIBUTION
110 JJ=0

IF(L.EQ.2) WRIrE8, 18)
18 FORMAT(x'$LIN 2*)

111 JJ=JJ+1
WRI TEC 6,20)

C ENDFILE 6
WRI TC(8, 20)

20 FORMAT(*PO EL PS SE CA BO RB CZ*)
112 READ(5,22) FF

WRITE(6,22) FF
WRITE(7,22) FF
WRITE(8,22) FF

22 FORMAT(A2)
IF(FF.EO.2FFO) GO TO 120
IF(FF.EQ.2HEL) 00OTO 125

A- 4

IF(FF.EQ.2HPS) GO TO 130
IF(FF.EO.2HSE) GO TO 135
IF(FF.EO.2HGA) GO TO 140
IF(FF.EQ.2HBO) GO TO 145
IF(FF.EG.2HRB) GO TO 150
IF(FF.EQ.2HCZ) GO TO 155
GO TO 112

**POLYGON

120 IMAX=99
CALL GET(IMAXXW,YW,X0,YO,R1 ,R2,D1 ,02)

121 CALL VEC(14IMAX,XW,YW)
CALL PUT(L,M,N,JJ, IMAX,XW,YW, IA, IB,JA.JB,J,X,Y, ILA,JLA)
P(J)=DATA(WE)
IF(P(J)) 180,122,180

122 HI=DATA(HE)
CALL WEIGHT(HI,J,P,IA,IB,X,Y)

**ELLI PSE
125 IMAX=3

CALL GET(IMAX,XW,YW,XO,YO,R1,R2,D1,D2)
CALL ELLP(XO,YO,R1,R2,D1,D2,SB,CB,XW,YW)
I MAX= 17[
GO TO 121

**PIE SLICE4
130 IMAX=2

CALL GET(IMAX,XW,YW,XO,YO,R1,R2,D1,D2)
R1=~0.

131 BSD=DATA(AN)
CALL SECR(PI.BB,BSD,X0,YO,R1,R2,D1,02,XW,YW,IMAX)
IF(L.EQ.1) GO TO 121
KO=KE(1,M..N)
XC=SE(1+KO)
YC=SE(2+KC)
CALL 11OVE(XO,YO,XC,YC,0.,l,IMAX,XW,YW)
GO TO 121

**SECTOR

135 IMAX=3
CALL GET(IMAX,XW,YW,XO,YO,R1,R2,D1,D2)
GO TO 131

:*GAUSSI.ON APPROXIMATION
140 IMAX=3

CALL GET(IMAX,XW,YW,XO,YO,R1,R2,D1,D2)

S2=.5'R2
D0 142 NC13
Rl 51 'NC
R2=S2*NC
CALL ELLP(XO,YO,R1,R2,D1,D2,SB,CB,XW,YW)
I MAX=17
CALL VEC(1,IMAXXW,YW)
CALL PUT(L,MN,JJ,IMAX,XW,YW,IA,IB8JA,JB,J,X,Y,ILA,JLA)

142 JJ=JJ+1
JJ=JJ- 1
PW=0ATA(WE)
P(J) :PWs.225
PJ-I)=PW*.536

A-5

P(J1-2)=PW* .239
GO TO 180

**BEARING ONLY
145 IMAX=2

CALL GET(IMAX,XW,YWXO.YO,R1,R2,D1,D2)
Ri =0.
R=R2
BC=DATA(SGB)*2.
DO 147 NC=1,2
BSD= BC*NC
R2=R+R*. 1m(NC-1) L
CALL SECR(PI,BB,BSD,XO,YO,R1,R2,D1,D2,XW,YW,IMAX)
IF(L.EQ.1) GO TO 146
KO=KE(1,M,N)
XC=SE(1+KO)
YC=SE(2+KO)
CALL MlOVE(XO,YO,XC,YC,0.,1,IMAX,XW,YW)

146 CALL VEC(1,IMAX,XW,YW)

CALL PUT(L,M,N,JJ,IMAXXWYW,IAIB,JA,JBJX,Y,ILA,JL.A)

JJ=JJ -1
PW= DATA(CWE)
P(J)=PW* .568
P(J-1)PW*.432
GO TO 180

**RANGE AND BEARING
150 IMAX=2

CALL GET(IMAX,XW,YWX0YO,R,R2,D1,D2)
RC=DATA(SGR) ,R2* .01
BC=DATA(SGB) *2.
R=R2
DO 152 NC=1,2
D=RCxNC
!R1=R-D SR2=R+D
BSDmBCxNC
CALL SEC.R(PI,BB,BSD,X,YO,R1,R2,D1,02,XW,YW,IMAX)
IF(L.EQ.1) GO TO 151
KO=KE(1,M, N)
XC=SE(1+KO)
YC=SE(21KO)
CAL!- MOVE(XO,YO,XC.YC,D.,1,IMA),XW,YW)

151 CALL VEC(1,IMAX,XW,YW)
CALL PUT(L.M,N,JJ,IMAX.XW,YW,IAIB,JA,JB,J,XY,ILA,JLA)

152 JJ=JJ+1
JJ=JJ- 1
PW= DATA(CWE)
PC J) =PWE .651
PCJ-)=PW*.319
GO TO 180

**CONVERGENCE ZONES
155 IMAX=2

CALL GET(IMAXXW,YW,XO,YO,R1,R2,D1,D2)
DO 156 ND=1,2
RO=R2*ND
RI=RO*(I. -. ?RNO)
CALL SECR(PI,BB,360.,XO,YO,RI,RO,D1,D2,XW,YW,MAX)
CALL VEC(I,IMAX,XW,YW)
CALL PUT(L,M,N.JJ.IMAX,XW,YW,IA,IB,JA,JB,J.,X,YILA,JLA)

A-6

PC JI :ATA(WE)
IF(P(J).GT.0.) G0OTO 156
HI =DATA(HE)
CALL WEIGHT(HI,J,P,IA,IB,X,Y)

156 JJ=JJ+1
JJ=JJ-1
GO TO 180

**TEST FOR FINISH AND CALCULATE STATISTICS
180 WRITE(6,24)

C ENDFILE 6
WRI TE(8,24) -

24 FORMAT(*MORE POLYGONS? (Y OR N)*)
READ(5, 14) 0
WRITE(6, 14) 0
WRITE(7, 14) 0
WRITECS, 14) 0
IF(0.EQ.1HY) GO TO I11

185 .1=JA(L,M,N)
J2=JB(L, M,N)
CALL NORM(Jl,J2.P)

186 CALL MOM(Jl,J2,IA,IB,X,Y,PH,EX,EY,EXX,EYY,EXY,XCEN,YCEN)
IF(EXX.GT.0. .AND.EYY.GT.O.) GO TO 187
WR ITE (6, 25)

C ENDFILE 6
WRITEC 8, 25)

25 FORMAT(wNEGATIVE VARIANCE*/)
GO TO 100

187 CALL EIGEN(EXX,EYY,EXY,R1,R2,D1,D2)
CALL SAVE(L,M,N1,EX,EY,R1 ,R2,D1 ,D2,EXX,EYY,EXY.SE,KE,KLA)
I NPUT(L, M,N)=.T.
WR ITE(C6, 28)
WRI TE(8,28)

C ENOFILE 6
WRI TE(8,28)

28 FOR!1AT(*$LIN I*)
GO TO 100

**DRAW ERROR ELLIPSE
190 KO=KE(L,M,N)

EX=SE(1+1<0)

EY=SE(2+KO)
Ri 'SE(3.iKO)
R2:5E(4+KO)
Dl =SE(5+KO)
D2=SE(6iKO)
CALL ELLP(EX,EY,R1,R2,D1,D2,SB,CB,XW,YW)
CALL VEC(1,17,XW,YW)
WRI TEC 6,28)
WR ITE(8, 28)
GO TO 100

**REPEAT DISTRIBUTION
200 CALL DRAW(L,M,N,IA,[B,JA,JB,X,Y,P)

WRI TE(6, 28)
GO TO 100

**LABFEL POLYGONS
205 JI=JA(L,M,N)

J2=JB(L,M, N)
JC 0

A-7

DO 206 J=J1,J2
JC=JC+1
Ii IA(J)
Xl :X(Ii

206 WRITE(6,30) X1,Y1,JC
WRITE(8,30) Xl ,YI,JC

30 FORMAT(. SVEC *.2(F1O.0,1X),*$STR *,1**
GO TO 100

**MOVE DISTRIBUTION
210 IMAX=2

CALL GET(IMAX,XW,YW,XO,YO,R1,R2,O1,D2) iXC=XO+R2*Dl
YC=YO+R2*D2
ANG=DA TA(CAN)
J1=JA'L,M,N)
J2=JB(L,M, N)
DO 211 J=Jl,J2
I 1=IA(J)
I 2=IB(J)

211 CALL MOVE(XO,YO,XC,YC,ANG,11,12,X,Y)
CALL DRAW(L,M,N,IA,IB,JA,JB,X,Y,P)
WRI TEC 6,28)
WRI TEC 8,28)
GO TO 186

::CHANGE WEIGHTS
220 Jl=JA(L,M,N)

J2:JB(L,M,,N)
DO 223 J=Jl,J2
JP='J-J1 +1

WRITE(6,32) JP
WRITE(8,32) JP

32 FORMAT(*WEIGHT OF *,12)
READ(5,33) P(J)
WRITE(6,33) P(J)
WRITE(7,33) P(J)
WRITE(8,33) P(J)

33 FORMAT(F1O.0)
IF(P(J)) 223,222,223

222 WRITE(6,38) JP
WRITE(8,38) JP

38 FORMAT(*HEIGHT OF *,12)
READ(5,33) HI
WRITE(6,33) HI
WRITE(7,33) HI
WRITE(8,33) HI
CALL WEIGHT(HI.J,P,IA,IB,X,Y)

223 CONTINUE
CALL NORM(J1,J2.,P)
DO 225 J=J1,J2

225 HCJ)=P(J)/XS(J)
GO TO 186

::FUSION (INTERSECTION, UNION, AND NEGATIVE INTERSECTION)
230 KL=2 $GO TO 241
235 KL=I SG0 TO 241
240 KL=4
241 JP1=JA(L,M,N)

A- 8

JP2=JB(L,M, N)
JO) =JA(L,MN2)
J02=JB(LM, N2)
JJ=O
DO 249 JP=JPI,JP2
DO 249 JO=JOI,JQ2
CALL OAK(KL,JP,JQ,IA,IB,X,Y,XW,YW,IW,JMAX)
IF(JMAX)255, 249,243

243 HPQ=H(JP)*H(JO)

DO 248 JO=1,JMAX

Dt 246 I=1,IM
)(S(I)-XW(1+10)

246 YS(I)=YW(l+lO)
IM= IM+1

YS(IMV=YS(1)
CALL VEC(1,IM,XS,YS)
JJ=JJ+l
CALL PUT(LM,N3,JJ,IM,XS.YS,IA.IBJA,JB,JX,Y,lLA,JLA)

248 P(J)=HPQ~AREA(XW,YWAW,JO)
249 CONTINUE

Nz N3
GO TO 185

*CONDITIONAL PROBABILITY
250 PROB=O.

JP1 =JA(LM, N)
JP2=JB(L M, N)
J01=JA(L,M,N2)
JO2=JB(L, M, N2)
DO 254 JP=JP1$JP2
DO 254 JQ=JO1,JQ2
CALL OAK(2,JP,JQO4A,IB,X,Y,XW,YW,IW,JMAX)
1 F(JMAX)255, 254,251

251 HPQ=FH(JP)*H(JO)
00 252 JO=1,JMAX

252 PROB=PROB+HPQ*AREA(XWYW, 1W, JO)
254 CONTINUE

PROB=ROB/.BS(HCJP1))
WRITE(6,34) NN2,PROB
WRITE(8,34) N,N2,PROB

34 FORMAT(*PROB OF *,I2,w GIVEN x,12,w =*.F5.2)
GO TO 100

255 WRITE(6,35) JMAX
WRITE(8,35) JMAX

35 FORMAT(*IUCALC ERROR u*,I3)
GO TO 100

* *STATUS
260 ICO=140O-ILA

JCO=200-JLA
KCO=90O-KLA
WRITE(8,36) ICOJCO,KCO
WRITE(6,36) ICO.JCO,KCO

36 FORMAT(*MEMORY LEFT:*,3X,
s * POINTS ... ,13X
$ x POLYGONS... .m,13,3X.
s STATISTICS... .*,13)
GO TO 100

A- 9

WPM'

**PREDICTIOPI ALGORITHM
500 CONTINUE

Ml =M+1
WRITE(8, 48)
WRITE (6,48)

48 FORMAT(*SERA G*)
WRI TE(8,50)
WR ITE(C6, 50)

50 FORMAT(*SLIN 4w)
CALL DRAW(1,M,N,IA,[B,JA,JB,(,Y,P)
CALL DRAW(2,M.N, IA, IS,JA,JB,X,Y,P)
IF(.NOT.LAND) GOTO 700
WRI TEt6,55)
WRITE(8,55)

55 FORMAT(*SLIN 8*)
LAN=LJB(1,1 ,1)
DO 600 J=l,LAN

IlwLIA(j)

CALL VEC(11,12,LAX,LAY)
600 CONTINUE
700 CONTINUE

WRI TE(6,28)
C ENDFILE 6

WRI TEC 8,28)
CALL MESSAGC(7HPOL ,7HMOVMENT)
CALL MOVMENT(M,N,JA,JBX,Y,IA,tB,PXCEN,YCEN

S XWYW,J, ILA,JLA,FLAG.SE,lKE,KLA-I,LAX,LAY,LIA,-IB,
$ LAN1,LAND,LN,I..E,L5,LW,INC,CLOSE)
CALL MESSAGA(7HPOL
IF(.NOT.FLAG) GOTO 100
CALL MESSAGC(7HPOL ,7HMOVCEN
CALL MOVECEN(M,N,JA,JB,X,Y,IA,I8,P,SE,KE,KLA,

$ XW,YW,J,ILA,JILA,X<CEN,YCEN,4,LA(,LAY,LIA,LIB,
S LANi,LANO,LNj-E,LS,LW, INPUT,COUIN7,FLAG)
CALL- MESSAGA(7HPOL
GOTO 100
END

FUNCTION FX(C)
FX=3+8* (C-2)
RETURN
END

FUNCTION FY(R)
FY=7+14'e(29-R)
RETURN
END

FUNCTION COL(X)

RETURN
END

FUNCTION ROW(Y)
ROW=29.5-(Y-7.)/14.
RETURN
END

A- 10

FUNCTION DATA(A)
WRITE(6,200) A

C ENOFILE 6
WRITE(8,200) A
READ(5,300) DATA
WRITE(6,300) DATA
WRITEC7,300) DATA
WRITE(8,300) DATA

200 FORMATCA9)
300 FORMATIFiQO0)

RETURN
END

SUBROUTINE GET(IMXYX1,Y1,R1,R2,D1,D2)
DIMENSION Xl),YI1),R(3)

100 FORMATI*SJUM 15,40*/*SWOR K*)
200 FORMAT(*POINT*)
300 FORMAT(8X,F3.0,1X,F3.04IX,Al)
400 FORMATI*SMON K*)
500 FORMAT(13(4I*SVEC *,2F7.0,*SSTR 136*)!))

WRITE(B, 100)
C ENDFILE 6

WRITEIS, 100)
DO 10 1=1,IM
WRI TEl 6,200)

C ENOFILE 6
WRITE(8,200)
READ(5,300) ROW,COL,SYM
X(I) FX(COL)
V(I)=FY(ROW)
IF(SYM.EQ.1H3) GO TO 30

10 CONTINUE
DO 20 1=2,IM
P:X(I) -X(I1)
Q=Y (I) -Y (1)

20 RI I)=SQRT(P*P+0*O)

RI :R(3)
R2=RI 2)
Dl=IX(2)-XC1))/R2
D2=(IV(2) -Y ()) /R2
GO TO 40

30 IM:I+l
XI IM)=X(I1)
VI IM)=Y(1)

40 WRITE(6,400)
C ENDFILE 6

WRI TEl 8,400)
WRITE(6,500) (X(I) ,YI I) * 1:IM)

C ENDFILE 6
WRITEI8,500) CXCI),VII),Iml, IM)
RETURN
END

SUBROUTINE PUT(L,M,N,JJ,IM,XW,YW,IA,,IB,JA,JB,J,X,Y,IL,JL)
DIMENSION XWI1),YWI1), IA(I). IB(1),JA(2,5,9),JB(2,5,9),

s X(I),Y(I)
JL=JL+1
IF(JJ.EQ.I) JA(L,M.N)=JL
J:JB(L,M,N)=JL
DO 10 11I,IM

A-11.

XC IL+I)'XWC I)
10 YCIL+I)zYWCI)

I ACJ)=IL+1
IL:! L+IM
IB(J)=IL
RET URN
END

SUBROUTINE MOVE(X1,Y1,X2,Y2,ANG,II,I2,X,Y)
DIMENSION X(1),Y(1)
A=ANG*3. 1416/180.
SA=SI N(A)
CA=COS(A)
DO 10 1=11,12
XI =X(I)-Xl
Y I=Y CI)-Y 1
XCI)=X2+XImCAI-YI*SA

10 YCI)=Y2+YI*CA-XI*SA
RETURN
END

SUBROUTINE NORMCJ1,J2,P)
DIMENSION P(I)
SUM=O.
DO 5 J=JlJ2

5 SUM SUM+P(J)
IF(SUM.LE.O.) STOP 1
DO 20 J=Jl,J2

20 P(J)=PCJ)/SUM
CALL PJOUTCJ1,J2,P)
RETURN
END

SUBROUTINE PJOUT(J1,J2,P)
DIMENSION P(H)
JM=J2-J1 +1
WRITE(6,iOO) (JC,JC=t,JMI
WRITE(7, 100) (JC,JC=1,JM)
WRITE(8,100) (JC,JC=1,JM)
WRITE(6, 200) CP(J) ,J=J , J2)
WRITE(7,200) (P(J),J=J1,J2)
WRITE(8,200) CPCJ),J=J1 42)

100 FORMAT(* POLYGON: i*9(14,3X))
200 FORMATC* WEIGHT: *,9(F5.2,2X))

RETURN
END

SUBROUTINE ELL-P(XC.YC,R1,R2,Dl,D2,SB,CB,XW,YW)

DO 10 1=1,17
XB=R1 *SBCj)
YB=R2*CBC I)
XW I)=XC+XBzD2+YB*rD1

10 YWC I)YC+YB*D2-XB*D1
RETURN
END

SUBROUTINE DRAWCL,M,N,IA,IB,JA,JB.X,Y,P)
DIMENSION 1A~i , IBC1),JAC2,5,9),JB(2,5,9).XC1),Y(1),PC1)
Ji :JA(L,M, N)
J2=JB(L,M,N)

A-12

DO 20 J=J1,J2
I I= IA(J)
12: IB(J)

20 CALL VEC(l1,12,X,Y)
CALL PJOUT(J , J2, P)
RETURN
ENO

SUBROUTINE VEC(I1,I2,X,Y)
DIMENSION XCJ).Y(1)
WRITE(6 '560)CXI)Y),11,2

C ENDFILE 6
WRITE(8,560) U(XI),YCI)), 1:11.12)

560 FORMATC('$VEC *,9(18F7.0,* &
RETURN
END

SUBROUTINE MOM(J1,J2.IAIB,X,Y,P,H,EX,EY,EXX,EYYEXY,XCEN,YCEN)
DIMENSION XCEN(1),YCEN(1), IA(1), IB(1),X(1),YC1),P(1),H(l)
EX:EY=EXX=EYY=EXY=0.
DO 55 J=Jl,J2
I 1:IA(J)
12=IBCJ)-i
CALL MESSAGC(7HMOM ,7HCENTRD
CALL CENTRD(11,12,X,Y,A,AX,AY,AXX,AYY,AXY)
XCEN(J) :AX/A
YCEN(J)=AY/A
Z=PC J) A4
EX=EX+Z*AX
EY=EY+Z*AY
EXX=EXX+Z*AXX
EYY=EYY+Z*AYY
EXY=EXY+Z*AXY
H(J)=P(J)/ABS(A)

55 CONTINUE
EXX=EXX-EX*~EX
EYY=EYY -EY*EY
EXY:EXY -EX*EY
RETURN
END

SUBROUTINE EIGEN(EXXEYY,EXY,R1,R2,D1.D2)
IF(EXY.NE.0.) GO TO 70
IF(EXX.GT.EYY) GO TO 60
D1=0. SD2=1.
U=EXX SV=EYY SG0 TO 80

60 01:1. SD2=0.
U=EYY SV=EXX $Go TO 80

70 EE=EXY*EXY
P=EXX+EYY
0:SQRTC (EXX-EYY)**2+4. mEE)
U: CP-Q)/2.
V: CP+O)/2.
W=V-EXX
D=SQRT(EE+W*W)
01 :EXY/D
02:W/D

80 RI=0.
IF(U/P.GT.1.E-100) R1:2.*SORT(U)
R2=2. zSORT(V)
RETURN

A- 13

END

SUBROUTINE SAVE(LMNEXEY,R1 ,R2,D1 ,D2,EXX.EYY,EXY.SE,KE,KL)
DIMENSION SEWl,KE(2,5.9)
SEC 1+KL)=EX
SEC 2+KL)*EY
SE(3+KL)=Rl
SE(4+KL):R2
SE(S+KL)=Dl
SE(6+KL) :02
SEC 7+KL) =EXX
SE(8+KL) :EYY
SEC 9+KL) =EXY
KE(LM,N)=KL
KL=KL+g
RETURN
END

SUBROUTINE SECR(PI,BB,BSD,XCYC,RI.RO,RXORYO,XW,YW,IMAX)
DIMENSION XW(1).,YW(1)
BS=BSD*PI /180.
AL=ATAN2(RXO, RYO) -BS/2.
I B=BS/BB+. 5
IF(lB.LE.0) 1B=1
B! :BS/IB

IMAX=23 180+1
DO 96 1=1,180
B=BIR(I-I)+AL
SBB=SI N(B)
CBCOS CB)
XW(I)=XC+RO*SBB
YWC I)=YC+RO*CBB
IF(RI.EQO.) GO TO 96
J: IMAX- I
XWCJ)=XC+RI *SBB
YW(J)=YC+RI RCBB

96 CONTINUE
IF(RI.GT.0.) GO TO 98
IMAX:IBO+2
XWC IBO+1)=XC
YWI IBO+1)zYC

98 XW(IMAX)zXWC1)
YW(IMAX)=YW(1)
RETURN
END

SUBROUTINE OAK(KL,JP,JO,IA,IB,X,Y,RX,RY,IR,JMAX)
DIMENSION PX(50) ,PYC5O) .QX(50) ,0VC50 ,WK(300),
* ~RX(1),RY(1), IRC2, 1,X(1),YC 1), IAC1), IBC1)

NP=IB(JP)-IA(JP)
NQ:IBCJQ)-IA(JO)
IP: IAC JP) -1
IO:IA(JQ)-i
DO 127 1s1,NP
PX(I):X(I+IP)

127 PVC I)=Y(I+IP)
DO 128 luTNO
QXC I):XC1+10)

128 OYCI:=Y(1+10)
CALL IUCALCCPX,PY,NP,QX,OY,N0,KL,WK,300,JMAX, IR,20,RX,RY,200)

A- 14

RETURN
END

FUNCTION AREA(XW,YW, IW,JO)
DIMENSION XW(1),YW(1),IW(2,1),XS(50),YS(50)
CALL MESSAGA(7HAREA
AREA=0.
10=1W(, JO)+1
IMM=IW(2,J0+IW(1,J0)-2
xw1=XW(10)
YW1=YW(10)
DO 50 1=10,IMM

BY=YW(1+1) -YWI
CX=XW(1+2) -XW1
CY=YW(1+2) -YWI
Al=.* (CX*BY -BXxCY)

50 AREA=AREA+AI
WRITE(7,60) AREA

60 FORMAT(*AREA IS *,G15.5)
CALL MESSAGRI 7H-AREA
RETURN
END

SUBROUTINE WEIGHT(H,J,P,IA,IB,X,Y)
DIMENSION P(1) IA(11, IB(l1),X(l1),Y(l)
I 1=IA(J)
12=IB(J) -3
A=0. f
Xl =X(Ii)
Y I=Y (11)
DO 50 1=11412
BX=X(1+1)-X1
BY=Y(I+1)-Y1
CX=X(1+2) -Xl
CY=Y (1+2) -Y 1
Al=.5s(CX*BY--BX*CY)
A=A+Al

50 CONTINUE
P J)=A*H
RET URN
END

SUBROUTINE LANDEF(LAX, LAY, LIA, LIB, LJB, LN, LE, LS, LW,
s XW,YW)

C
C LANDEF AT USER OPTION DEFINES LAND MASSES BY ACCESSING A LAND FILE ON
C UNIT 9 OR BY TERMINAL INPUT
C

DIMENSION XWUl,YW1),LIA(200),LIB(200,LJA1, 1,1),LJB(1, 1,1)
LOGICAL FLAG
REAL LAX(1400),LAY(1400),LW(200),LN(200),LE(200) ,LS(200)
DATA LIL,LJL/0,0/,JJ,J2/0,0/
DATA 12/0/
CALL MESSAGA(7HLANDEF
WRITE 6, 7)
WRI TECS,7)
7FORMAT(*SLIN 8*)
LJB(1 ,1 ,1) :0
FLAG . F.

A- 15

WRITE(6, 10)
WRITE(8, 10)

C ENDFILE 6
10 FORMAT(* USE LAND FILE? (Y OR N) *

READ(5,20) 0
WRITE(6,20) 0
WRITE(7,20) 0
WRITEC8,20) 0

20 FORMAT(A1)
IF(0.E0. IHY) 100,200

100 CONTINUE
READC9) LAX, LAY,L IA, LIB,LJA, LJB,LW,LE,LN, LS
FLAG=.T.
J2=LJB(1, 1 ,1 1
DO 130 J=1,J2
I 1=LIA(J)
12=L]B(J)
CALL VEC(I1,I2,LAX,LAY)

130 CONTINUE
200 CONTINUE

WRITE(6,30)
WRITE(8, 30)

C ENDFILE 6
30 FORMAT(*~ DEFINE LAND FROM TERMINAL? (Y OR N)*)

READ(5,,20) 0
WRITE(6,20) 0
WRITE(7,20) Q
WRITE(8,20) 0
IF(0.EO.1HY) 300,400

300 CONTINUE
IF(FLAG) 320,325

320 CONTINUE
JJ=J2

325 CONTINUEf
IMAX=99
JJ=JJ+1
CALL GET(IMAX,XW,YW,XO,YO,RI,R2.D1,D2)
CALL VECUI,IMAX,XW,YW)
CALL PUT(1,1,1,JJ,IMAX,XW,YW,LfA,tJ8BLJA,L.J8,LJ,LAX,LAY,

S 12,J2)
CALL MESSAGC(7HLANDEF ,7HRECTAN
CALL RECTAN(1, IMAX,XW,YW,LN(LJI ,LEz(LJ) ,LS(L.J) ,LW(LJ))
CALL MESSAGA(7HLANDEF
WRI TE(6,40)

C ENDFILE 6
WRI TE(8,40)

40 FORMAT(-MORE LAND? (Y OR N)*)
READ(5,20) 0
WRITE(6,20) Q
WRITE(7,20) 0
WRITE(8,20) 0
IF(.EQ.IHY) GOTO 325

400 CONTINUE
WR ITE (6, 50)
WRITE(8, 50)

50 FORMAT(* SAVE LAND ON UNIT 10? (Y OR N)*)
READ(5,20) 0
WRITE(6,20) 0
WRITE(7,20) 0
WRITE(8,20) 0
IF(0.EO.1HY) 500,600

500 CONTINUE
WRITEC 10) LAX,LAYLIA,I.I8LJA,LJB,LW,L.E,LN,LS
ENDFILE 10

600 CONTINUE
CALL MESSAGR(7MLANDEF
RE TUR N
END

A-16

SUBROUTINE MOVMENT(M,N,JA,JB,X,Y, IA, IB,P,XCEN.YCEN,
s XW,YW,J, ILA,JLA,FLAG,SE.KE,KLA,H,LAX,LAY,LIA,LIB,

S LAN,LAND,LN,LE,LS,LW,INC,CL-OSE)

C

C POSITION DISTRIBUTION IS MOVED TO ACCOUNT FOR THE PASSAGE OF TIME

C INCORPORATING SPEED AND COURSE UNCERTAINTY AND LAND INTERACTION.J

C

LOGI CAL FLAG, LAND, LANI NT

DIMENSION JA(2, 5,9) *JB(2, 5,9),X(1), Y(1), IA(1), 18(1),
s P(l),XCEN(1),YCEN(l),XW(1),YW(l),SE(),1(1), IW(2,1),
S KE(2,5,9) ,WK(300),RX(200) ,RY(200),
S IR(2,20) ,XPC(200) ,YPC(200) ,)C(200) ,YC(200) ,XS(200) ,YS(200),
s IS(2,20),LIA(1),LIB(1)

REAL LAX(1),LAY(1),LN(1),LE(1),LS(1),LW(l), INC
DATA IR(1,1)/0/
CALL MESSAGA (7HMOVMENT)
FLAG=.T.
SUB=7HMOVMENT
Ml =M+1
JJ=0
JA2=JA(2,M,N)
JB2=JB(2,M,N)

DO 1000 NC=JA2,JB2
1A2=IA(NC)
I B2= IB(NC
I C2= I 2-IA2+1
PC=P(NC)
DO 900 NP=JAI,JB1

C GENERATE THE VELOCITY POLYGON WITH RESPECT TO POSITION POI-YGON. THE
C RESULT IS STORED IN XC,YC.
C

SENCI =XCEN(NC) -XCEN(NP)
SENC2=YCEN(NC)--YCEN(NP)
SEI1-SE(l1+KEI ,M,N))+XCEN(NMP)
SE2= -SE(C2l+KE (I,M, N))+YCEIJ(NP)
DO 100 I=!A2,IB2

IU'lI -A2+1
XC(IU)=X(I)+SE1
YC(IU)=Y(I)13E2

100 CONTINUE
C WRITE(6,6)
C WRITE(8,6)
C 6 FORMAT(*SLIN 5*)
C CALL VEC(1,1C2,XC,YC)

IAl IA(NP)
181 IB(NP)

PP=P(NP)
IF((P'P.LT.0A).AND.(PC.LT.0.)) GOTO 900
IF(PP.LT.0.) GOTO 500
IF(PC.LT.0.) GOTO 700

200 CONTINUE

C TWO POSITIVE INPORMATION AREAS.
C GENERATE CUM(NP,NC),SEE DOCUMENTATION. RESULT IS STORED IN XS,YS.

C WRI TE 7,7)

7 FORMAT(*THE CENTROID POLYG~ON WITH RESPECT TO THE*

A-i17

s POSITION(POLYGON IS *
WRI TE(7 ,8) XC(I) ,YC(I) , I 1 , C2)

a FORMAT(5(G13.6,G13. 6))
C ENDFILE 7

WRITE(6, 19)
WRITE(17, 19)
WRITE(8, 19)

19 F0RMAT(*CALL NUCUMUN (Y OR N)*)
READ(5,30) 0
WRITE(6,30) 0
WRITE(7,30) 0
WRITE(8,30) 0
IFCO.EO.IHN) GOTO 250
CALL MESSAGC (7-Il'AAM 71-INUCUMUN
CALL NUJCUMUN(NP,NC, IA, IB,X,Y,XW,YW,XS,YS, 15,1WXCEN,YCEN,

$ WK,XC,YCFLAG,XPC,YP'C,ICI,,JMAX)
CALL MESSAGA(7I!MCVMENT)
GOTO 300

250 CONTINUE
30 FORMAT(Al)

CALL MESSAGC(7HPIAAM ,7HCUMUN
CALL CUMUN(NP,NC,IA,IB,X,Y,XW,YW,XS,YS,IS.IW,XCEN,YCEN,

$ WK,XC,YC,FLAG,RX,RY,IR.JMAX)
CALL IIESSAGA (75 IMOVMENT)

C
C GENERATE PIAAM(NP,NC)= ClJMNP,NC) U NC(C) U NP(C)=OUTFR BOUINDARY
C OF CUM(NP,NC)zCLOCIK'WISE TURN'NG POL-YGON. STORE RESULT IN XPC,YPC

IF(.NOT.FLAG) RETURN
CALL MESSAI3C(7HPIAAM ,7HSELECT

KAY -1
CALL SELECT(KAY,JMAX.XS.YS,IS,XPC,YPC,ICI)
CALL MESSAGA (7HMOVMENT)
IF(KAY.NE.O) GOTO 300 t

WRITE(6, 15)
WRITE(7, 15)

C ENOFILE 7
WRITEI8, 15)

15 FORMAT(*ERROR IN PIAAM CALCULATION*)
FLAG'. F.
CALL MESSAGR I7H1MOV'IENT)
RETURN

300 CONTINUE
CALL CONCLDE(MI,N,JA,JB,X,Y,IA,IB,P,

s XCEN,YCEN,J, ILA,JLA,FI.AG,SE,KE,KLA,H,L-AX,LAY,LIA,
$ LIB,LAN,LAND,L-N,LE,L-S,L-W,INC,CLOSE,JJ,ICI,XPC,YPC,

$ PP,PC,XW,YW, IW,RX,RY, IR,XS.YS, ISLANINT)
GOTC) 900

500 CONTINUE
C
C POSITION POLYGON IS A NEGATIVE INFORMATION AREA
C TRANSLATE THE NEGATIVE INFOrNMATION POSITION AREA
C TO HAVE CENTrROID AT ITS VELOo'ITY CENTROID.
C STORE IN XPC,YPC,
C

D0 525 I=IA1,IB1
IIU= I - I A 1I
)(PC(IU)=X(I)+SENCI
YPC(IU)=Y(I)+SENC2

525 CONTINUE
CALL MESSAGC(I7HN IAAMPO, 7HCUMUN

A-18

C ENDFILE 7
CALL CUMUN(NCNP,IA,IB,)(,Y,XW,YW,XS,YS, IS,

$ IW,XCEN,YCENWK,)(PCYPC,
s FLAG,RX,RY,IR,JMAX)

CALL MESSAGA (7HMOVMENT)

C GENERATE NIAAM(NP,NC)=NP(C) & -CUIM(NP,NC)=INNER BOUNDARY OF
C CUM(NP,NC)=COUNTERCLOCK'WISE POLYGON. STORE RESULT IN /,PCYPC.
C

IF(.NOT.FLAG) RETURN
CALL MESSAGC(7HNIAAMPO,7HSELECT
KAY=-2
CALL SELECT(KAY,JMAX,XS,YS,IS,XPC,YPCICI)
CALL MESSAGA(7HMOVMENT)

C
C IF KAY=O NIAAM IS THE EMPTY SET
C

IF(KAY.EO.0) GOTO 900
CALL CONCLDE(M1,N,JA,JB,X,Y,IA,1B,P,

s XCEN,YCEN,J,ILA,JLA,FLAG,SEKE,KLAHLAX,LAY,LIA,LIB,
$ LAN,LAND,LN,LE,LS,LW,INCCLOSE,JJ,ICI,XPC,YPC,PP,PC,XW,
S YW,4W,RX,RY,IR,XS,YS,[S,LANINT)

IF(.NOT.FLAG) RETURN
GOTO 900

700 CONTINUE

C CENTROID POLYGON IS A NEGATIVE INFORMATION AREA
C

CALL MESSAGC(7HNIAAMCE,7HCUMUN I
CALL CUMUN(NP,NC,IA,IB,X,YXW,YW,XS,YS,IS,

s IW,XCEN,YCENWK,XC,YC, FLAG,
$ RX, RY, IR, JMAX)

CALL MESSAGA (7HMCVMENT)
C
C GENERATE NIAAM(NP,NC)=NC(C) & -CUM(NPNC)=INNER BOUNDARY OF
C CUM(NP,NC)=COUNTERCLOCKWISE POLYGON. STORE RESULT IN XPC,YPC.
C

IF(.NOT.FLAG) RETURN
CALL MESSAGC(7HNZAAMCE,7HSELECT
KAY= -2
CALL SELECT(KAYJMAX,XS,YS, ISXPC,YPC, [Cl)
CALL MESSAGA(7HMOVMENT)

C
C IF KAY=O NIAAM IS THE EMPTY SET
C

IF(KAY.EQ.O) GOTO 900
CALL. CONCLDE(Ml,N.JA,J13,X,Y,IA,IB,P,

s XCEN,YCENJ, ILA,,JLA,FLAG,SE,KE,KLA,HLAX,LAY,LrALIB,
s LANLAND,LN,LE,L$,LW,INC,CL-OSE,JJ,IC1,XPC,YPC,PP,PC)(W,
s YW,IW,RX,RYIR,XS,YS,[S,LANINT)

IF(.NOT.FLAG) RETURN
900 CONTINUE

1000 CONTINUE

CALL MESSAGC(7HMOVMENT,7HUPOATE
CALL UPDATE(Ml,N,JA,JB,X,Y.IA,IBP,XCEN,YCEN,

s J,ILA,JLA,SE.KE,H,KLA,FLAG,1)
CALL. MESSAGA(C7HMO'JMENT)
IF(.NOT.FLAG) RETUJRN
CALL MESSAGRC 7HMOVMENT)
RETURN

A-1.9

END
SUBROUTINE CONCL-DE(M1,N,JA,JB,XY,IA,IB,P,XCEN,YCEN,

s J, ILA,JLA,FLAO,SE,KE,KLA,H,LAX,LAY,LIA,LIB,LAN,LANO,LN.
s LE,LS,LW,INC,CI.OSE JJ,IC1,XPC,YPC,PP,PC,XW,YW,IW,RX,RY,
S IR,XS,YS,IS,L-AtlNT)

C
C CONCLDE STORES THE RESULTING POSITION POLYGON TAKING ACCOUNT
C OF LAND INTERACTION.
C

LOGICAL FLAG, LAND, LANINT
DIMENSION JA(2,5,9),JB(2,5,9)LX(I),Y(), IA(l),IB(1),P(1),

s XCEN(1),YCEN(1),XW(1),YW(l),H(1),IW(2, I),SEI1),
s KE(2,5,9),WK<(1),RX(1),RY(1), IR(2,1),XPC(),YPCUl,
s XS(1),YS(1), IS(2,1),XWO(1400),YWO(1400),

S NUM(2,200) ,LIA(1) ,LIB(1)
REAL LAX((1),LAY(1),LN(1),LE(1),LS(1),LW(l), INC
INTEGER REM(2,20),INUM(5O)
DATA REM(1,1), NUM(1, 1 /2*O/
CALL MESSAGA(C7H1CONCLDE)
IF(.NOT.LAND) GOTO 900
CALL MESSAGC(7HCONCLDE, 7HPOSINT

C
C LAN=LJB(1,1,1)

CALL POSINT(XPC,YPC, 1CI,LAX,LAY,LIA,LIB,LAN,L-N,LE,LS,LW,XW
$,YW,IW,RX,RY,IRXS,YS,IS,LANINT,INC,CLOSE,FLAG,XWO.YWO,
s NUM, REM, IREM, INUM,PP,PC)

CALL MESSAGA C7HCONCLDE)
IF(.NOT.FLAG) RETURN

C

C WHEN (XPC,YPC) INTERSECTS SOME LAND MASS, (XWO,YWO)

C THE LAND MASSES (LAX,LAY). THE CONTENTS OF (XPC,YPC)
C ARE UNCHANGED. IREM IS THE INDEX OF THE OPTIMAL SET OF
C REMAINDER POLYGONS. INUM(IREM) IS THE INDEX OF THE LARGEST
C REMAINDER POLYGON IN SET IREtM. THE VARIOUS SETS OF
C REMAINDER POLYGONS ARE SPECIFIED BY (XWO,YWO,NUM,REM).
C IF LANINT=.FALSE.,THEN (XPC,YPC) INTERSECTS NO LAND MASS
C

IF(.NOT.LANINT) GOTO 900
IF((PP.GT.0.).AND.(PC.GT.O) GOTO 800
AR=0.

C
C THIS CODE HANDLES NEGATIVE INFORMATION AREAS.
C

Ji =REM(l1, 1)
J2=REM(2, 1)

DO 600 JO=1,J2

ICI=NUM(2,Jl+JO)
DO 500 I=l,ICl

YPC(I)ROU(YWO(ISI+I))

500 CONTINUE

XPC(ICl) =XPC(1)
YPC(]ICl) =YPC(1)
WRITE(7,60) JOIREM
WRITE(7,8) (XPC(11.YPC(), 1=1, ICI)

C ENDFILE 7
WRI TE(6, 40)

A- 20

WRITEC8,40)
CALL VEC(1,IC1,XPC,YPC)

CALL PUT(1,M1,N,JJ,1C1,XPC,YPC,IA,IB,JAJB,J,X,Y,ILA,JLA)
A=AREA(XWO, YWO, NUM, J1+JO)
AR: ARA
PC J) PP'cPCxA
IF(JO.EO.1) JJI=J
IF(JO.EQ.J2) JJ2=J

600 CONTINUE
DO 700 JO=JJl,JJ2
P(JO)=P(JO)/AR

700 CONTINUE
CALL MESSAGR(C7H-CONCLDE)
RETURN

800 CONTINUE
WRITE(7,60) INUM(IREM),IREM

60 FORMAT(*POLYGON N,13,* IN THE OPTIMAL REMAINDER SET *413)
JO=REM(I *IREM)q[NUM(IREM)
ISi :NUM(1,*JO)
ICi :NUM(2, JO)
DO 860 I=IjICI

XPC(I)ROU(XWO(IS1+I))
YPC I)=ROU(YWO(IS1+I))

860 CONTINUE
900 CONTINUE

)p(PC(li)=XPC(1)4
YPC(ICl) :YPC(1)
WRITE(7, 8) (XPC(I) ,YPC(I) ,1=I, Ci

8 FORMAT(5(Gl3.6:Gl3.6))
C ENDFILE 7

WRI TE(6, 40)
WRI TE(8,40)

40 FORMAT(*SLIN 1w.)
CALL VEC(l,IC1,XPC,YPC)
JJ=JJ+1
CALL PUT(1.M1,N,JJ,1C1,XPC,YPC,IA,IB,JA,JB,J.X,Y,ILA,JLA)
P(J) :PP*PC
CALL MESSAGR (7HCONCLDE)
RETURN
END

LOGICAL FUNCTION COLL(PARX,PARY)
C
C COLL IS TRUE WHEN POINTS IN PARX,PARY DO NOT FORM A PARALLFI.OGRAM.
C

DIMENSION PARX(4) ,PARY(4)
CALL MESSAGA(7HCOLL
COLL .F.
E.0001

EP: I.
DO 50 1:1,3
11=1+1
DO 40 J=11,4
IF((ABS(PARX(l)-PARX(J)).GT.EP).OR.(ABS(PARY(I)-PARY!J)).GT.EP))

S GOTO 39
COLL . T.
CALL MESSAGR(7HCOLL
RETURN

39 CONTINUE
40 CONTINUE

A- 21

50 CONTINUE
Al :PARY (2) -PARY (l)
B1=PARX(2)-PARX(l)
Cl=(A1*PARX(1)-(PARYh1)*Bl
A2=PARY(3) -PARY(4)
B2=PARX(3) -PARX(4)
C2= (A2'*PARX(4))- (PARY (4) wB2)
IF(ABS(A2) .LT.E) 100,200

100 CONTINUE
IF(ABS((Cl/B1)-(C2/B2)) .LT.EP) COLL=.T. :
CALL MESSAGR(7HCOLL
RETURN

200 CONTINUE
IF(ABS((C1/Al)-(C2/A2)).L-T.EP) COLL=.T.
CALL MESSAGR(7HCOLL
RETURN
END
SUBROUTINE CUMUIN(NGONI,NGON2,IA,IB,X,Y,XW,YW,XS,

S YS,IS,IW,XCEN,'YCEN,WK,PGX,PGY,FLAG,
S RX,RY,IR,JMAX)

C

C GIVEN POLYGONS NGONI AND NGON2,GENERATE CUJM(NGONI,NGON2). I
C THIS IS THE SET RESULTING FROM MOVING NGONI AROUND THE VERTICES
C OF NGON2. FOR EACH J EVALUATE NGON1 AT VERTEX J OF NGON2, CALL
C IT NGON1(J). UNION TO NGON1(J) ALL PARALLELOGRAMS GENERAIED
C BY NGONI(J) AND NGONI(J+1). TAKE THE UNION OF THIS RESULT OVER
C ALL J. CUM(NGONI,NGON2) ACTUALLY EOUALS THE UNION OVER ALL J
C OF ALL PARALLELOGRAMS GENERATED BY NGONI(J) AND NGON1(J+1).
C BUT SOMETIMES WHEN JUST PARALLELOGRAM UNIONS WERE USED,

C COMPUTATIONAL PROBLEMS CAUSED MORE THAN ONE FIGURE TO RESULTC AT INCONVENIENT POINTS. THIS PROBLEM WAS ALLEVIATED BY
C INCORPORATING NGON1(J) EXPLICITLY IN THE CALCULATIONS.
C XS,YS CONTAINS THE RESLILT CUM(NGONI,NGON2).
C

LOGI CAL COLL,FLAG, FLAGI
DIMENSION X(1),Y(1), IA(1), IB(l),XW(1),YW(l),IW(2,1),XS(1),

S YS(1),PX(50),PY(50),OX(50),QY(50),WK(1),PGX(1),PGY(l),
S PARX(4),PARYL4),RX(l),RY(1), IS(2,1), IR(2,1),
S XCEN(l),YCEN(1)

C
C PGX,PGY CONTAINS X AND Y COORDINATES OF NGON2.M2 IS THE NUMBER OF
C DIFFERENT VERTICES OF NGON2
C PX,PY CONTAINS NGONI AT THE J VERTEX OF NGON2
C OX,QY CONTAINS NGONI AT THE J±1 V/ERTEX OF NGON2
C PARX,PARY CONTAIN THE VERTICES OF7 PARALLOLOGRAM 14J
C

CALL MESSAGA(7HCUMUN
I AlI A (NGON 1)
Ml I B (NGON 1) -IA 1
Ml 1=MI +1
M2=IB(NGON2) -IA(NGON2)
M22=M2+1
M21 =M2- 1
SUB=7HCUMUN
XCI=-XCEN(NGON1)+PGX(l)
YCl=-YCEN(NGON1)+PGY(1)
DO 1500 J=1,M2
XC2=-XCEN(NGON1)+PGX(J+1)
YC2'=-YCE4NGON1)+PGY(J+1)

C
C EVAL.UATE AND SAVE NGON1(J) AND NGONI(J+1)

A- 22

C
IF(J.EO.l) 100,200

100 DO 120 I:1,Ml

IAI 1 IA1+I -1
PX([I)=ROU(X(IAII1)+XCl)
PY(I hROU(Y(IAl1)+YC1)

120 CONTINUE
PX(MI I):rJ)()

GOTO 400
200 CONTINUE

D0 220 I=1,M11
PX(I)=X(I)

PY(I)=Y(I)

220 CONTINUEI

IAl =IA1+I -1
OX(I)ROU(X(IAl11)+XC2)
QYC 1)=ROI)tYCIAII1)+YC2)

500 CONTINUE
QX(Ml 1)=QX(1)
QY(M1 I)=QY(1)

800 CONTINUE
DO 1000 I=1,M1
IF(I.EQ.1) 820,840

820 CONTINUE
IWi =M1
DO 830 K=1,1W1

XW(K)=PX(K)
YW(K) =PY (K)

830 CONTINUE
840 CONTINUE

C
C GENERATE PARALLELOGRAM I

PARX(1)PX(I)
PARY (1) W (I)

PARX(2)WPX(1+1)
PARY(2)WPY(1+1)
PARX(3)=QX(1+1)
PARY(3)=OY(1+1)
PARX(4)=QX I)
PARY(4)=QY(I)
CALL MESSAGC(7HClJMUN ,7tlCOLL
IF(COLL(PARX,PARY)) GOTO 1000

C
C GENERATE UNION OF PARALLFLOGRAMS(I,J),I=1,MI,= XW,YW
C

CALL MESSAGC(7HCUMUN ,7HPREIU 1)
CALL PREIU(XWYW,IW1,PARX,PARY,4,1,IS,XS,YS,SUB,FLAG,

s FLAGI,JMAX)
CALL MESSAGA(7HCUMUN
IF(NOT.FLAG) RETURN

1000 CONTINUE
1200 CONTINUE

C
C UNION XW,YW WITH PREVIOUS RESULTS STORE RESULT IN XS,YS,AND (WHEN
C RESULT IS ONE POLYGON) IN RX,RY.
C

IF(J.EQ.1) 1300,1400

A-23

1300 CONTINUE
IR1=IR(2, 1)IWI
DO 1325 K=1,IR1

RX(K) :XW(K)
RY(K)=YW(K)

1325 CONTINUE
GOTO 1500

1400 CONTINUE
CALL MESSAGC(7HCUMUN ,7HPREIU 3)
CALL PREIU(RX,RYAIR1,XW,YW,ZW1A1,IS,XS,YS,SUB,FLAG,FLAG1,JMAX)
CALL MESSAGA(7HCUMUN

C WHEN J=M2,RESULT COULD BE A POLYGON AND A HOLE. THIS IS THE CASE
C WHEN CUM SURROUNDS A NONEMPTY AREA. THEN FI ND RESULT IN XS,YS.

IF(.NOT.FLAG) RETURN
1500 CONTINUE

CALL MESSAGR(7HCUMUN
RETURN
END
SUBROUTINE PREIU(XW,YW,1WI,PX,PY,M1,KL,IS,XSYS,

S SUB, FLAG, FLAGI ,JMAX)
LOGICAL FLAG, FLAG)
.DIMENSION XW(1),YW(l),PX(1),PY(1),XS(1),YS(1),WK<(300),
$ IS(2,1)

C
C PREIU CALLS IUCALC. TESTS JMAX FOR IUCALC AND CALLING ROUTINE ERRORS.
C THE IUCALC RESULT IS TRANSFERED TO XW,YW.
C IF ERROR THEN AN APPROPR!ATE MESSAGE IS WRITTEN.
C SUB CONTAINS THE NAME OF CALLING ROUTINE.

CALL MESSAGA(7HPREIU
FLAG . T.
FLAG)=. T.
WRI TEC 7,30) (XW(I), YW(I),I 1, 1WI)
WRITE(7,30) (PX(I),PY(I), 1=1,M1)
CALL MESSAGC(7HPREIU ,7HIUCALC
CALL IUCALC(XW,YW,IW1,PX,P'Y,M1,KL,WK,300,.IMAX,IS,20,XS,YS,200)
CALL MESSAGA(7HPREL)
IF(JMAX) 100,200,300

100 CONTINUE
WRITE(6,15) JMAX,SUB
WRITE(7,15) JMAX,SUB

C ENOFILE 7
15 FORMAT(*IUCALC ERROR *,13,x OCCURS IN *,A7)

WRI TE(6,25)
WRI TEC 8,25)

2!5 FORMAT(i*$LIN 7*)

XW(IWI 1)=XW(1)
YW(1Wl) YW(1)

PX(M1 1)=PX(1)
PY(M1 1)=PYC 1)

30 FORMAT(5G13.5,G13.5))
CALL VEC(1,IW11,XW,YW)
CALL VEC(1,M11,PX,PY)
FLAG . F.
CALL MESSAGR(7HPREIU
RETURN

200 CONTINUE
C WRITE(6,40) SUB,JMAX

WRITE(7,40) SUB,JMAX

A- 24

40 FORMAT(A7,*RESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT *

S *EXISTS. *,13)
C ENDFILE 7
C
C RESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT EXISTS
C

FLAGI=.F.
CALL MESSAGR(7HPREIU
RETURN

300 CONTINUE
C WRITE(6,50) JMAX

WRITE(7,50) JMAX
C ENOFILE 7

50 FORMAT(xPREIU CALLS RECOVER *,13)
CALL RECOVER(JMAX,XS,YS,IS,XW,YW,IWI,SUB)
CALL MESSAGA(7HPRE1U)
I F(JMAX.EQ. 0) FLAGI=.F.
CALL MESSAGR(7HPREIU
RETURN
END
SUBROUTINE SELECT(KJMAX,XS,YS,IS,XPC,YPC,ICI)

C
C SELECT EXTRACTS THE APPROPRIATE POLYGON FROM CUM(NP,NC),
C STORES IT IN (XPCYPC).
C IF K=-1 THE OUTER BOUNDARY OF CUM IS SELECTED,THIS IS A CLOCKWISE
C POLYGON AND PIAAM AND AREA.GT.O.
C IF K=-2 THE INNER BOUNDARY,IF IT EXISTS, IS SELECTED,THIS IS A COUNTER-
C CLOCKWISE POLYGON AND NIAAM AND AREA.LT.O.
C K=O IF NIAAM DOES NOT EXIST.
C

DIMENSION XS(1),YS(1), IS(2,1),XPC(1),YPC(l)
CALL MESSAGA(7HSELECT
IF(JMAX.EQO) STOP 4
IF(JMAX.EQ.1) 100,500

100 IF(K.EO.-.) 200,300
200 CONTINUE

IC1ISC2, 1)
DO 225 I=1,1C1

XPC! I))XS(I)
YPC(I)YS(I)

225 CONTINUE
WR ITE (7, 1 D

10 FORMAT(*SELECT CHOOSES THE POLYGON DEFINED BY *
WRITE(7, 15) (XPC(I) ,YPC(I), I'1, ICI

15 FORMAT(5(013. 5,G13. 5))
C ENDFILE 7

CALL MESSAGr(7HSELECT)
RETURN

300 CONTINUE
K=O
CALL MESSAGR(7HSELECT)
RETURN

500 CONTINUE
MAX' JMAX
DO 600 J=1,MAX

C
C CALCULATE AREA OF POLYGON IN IUCALC OUTPUT FORMAT.
C

CALL MESSAGC(7HSELECT ,7HAREA
A=AREA(XS,YS, 154)
CALL MESSAGA(7HSELECT

A- 25

I ClF(2,. I . ND (, T 0) J)O 0
IFU(K.EQ.-2).AND.(A.LT.0.)) GOTO 600

IOM=IS(I *J)+IC

DO 560 1=10OO10M

I U=I-100+1XPC(I.)X5(I)
YPCC IU):YS(I)

560 CONTINUE
WRITE(7, 10)

C DLEWRITE(7, 15) (XPC(I),YPC(I 1, I=1Id

CALL MESSAGR(7HSELECT)

RETURNI
600 CONTINUE

K=0
CALL MESSAGR(7HSELECT)
RETURN
END
SUBROUTINE UPDATE(Ml,N,JA,JB,X,Y,IAlB,P.XCEN,YCEN,

S J,ILA,JL-A,SE,KE,HKLA,FLAG,L)
C
C UPDATE CALCULATES STATISTICS FOR THE NEW DISTRIBUTION
C

LOGICAL FLAG
DIMENSION JA(2,5,9),JB(2,5,9),Xfl),Yr~l),IAt), IB(1),PC1),

$ XCEN(1),YCEN%1),SE(1),KE(2,5,9),H(1)
CALL MESSAGA(7HUPDATE
FLAG . T.
JI=JA(L,M1 ,N)
J2=JB(L,M1 ,N)
CALL NORM(JlJ2,P)
CALL MOM(J1,J2lIAAB,XY,P,H,EX,EY,EXX,EYY,EXY,XCEN,YCEN)
IF((EXX.GT.0.).AND.(EYY.GT.0.)) GOTO 100
WRITE(6, 10)
WRI TE(7, 10)

C ENDFILE 7
10 FORMAT(*NEGATIVE VARIANCE WAS COMPUTED IN UJPDATE*/)

FLAG:. F*
CALL MESSAGR(7HUPDATE
RETURN

100 CONTINUE
CALL EIGEN(EXX,EYY,EXY,R1,R2,D1,D2)
CALL SAVE(L,MI ,N,EX,EY,RI ,R2,D1 ,D2,EX)X,EYYEXYSE,KE.KLA)
CALL MESSAGR(7FHUPDATE
RET URN
END
REAL FUNCTION ROU(X)
ROU=AINT(X+0.5)
END
SUBROUTINE RFCOVER(JMAX,XS,YS,ISXW,YW,IW1,SUB)
REAL IE
DIMENSION XS(1),YS(1),XWUl,YWr1),XR(200),YR200),IS(2,I),

S IR(2,20)
C COINCIDENT VERTICES AND DEGENERATE POLYGONS ARE REMOVED.
C

CALL MESSAGA(7HRECOVER)
IRI :0
I R(1,*1)=[IRi
MAX: JMAX

A- 26

IEZi
DO 600 J=1,JMAX

IS2=IS(i 4)

S=YR(1R~I-i)=RCU(YS(131+1))
DO 450 K=2,1S2
RVsR~tI(XS(151+K))
Si :ROU(YS(I131+K))

KIF(AB (-K).E1E .ND+1 1;I)L .I)
" GOTO 450

R=X(R(IRi +K(1)=Ri
S=YR(I RI+Ki) =S

450 CONTINUE

Si :YR(IRi +1)
IF((ABSR-R).LE.IE).AN.(ABS(S-Si).LE.IE))

" KI=Kl-i
IF(K1.LE.2) 500,550

500 CONTINUE
MAX:MAX- 1
GOTO 600

550 CONTINUE

600 CONTINUE
r JMA)(=MA(

IF(JMAX.EQ.1) 650,700
650 CONTINUE

IW1=IR(2, 1)
00 675 ItiIWi
XWC 2)=XR(I)
YW(]I)=YR(I

675 CONTINUE
WRITE(7,i0) (XW(t),YW(I), :1, [Wi)

C ENOFILE 7
10 FORMAT(5(G13.5,Gi3.5))

CALL MESSAGR(7HRECOVER)
RETURN

700 CONTINUE
IF(JMAX.EO.0) 725,735

725 CONTINUE
WRITE(7,iS) SUB,JMAX

15 FORMAT(A7,* RESULT IS THE SAME AS ORIGINAL DATA OR NO RESULT ~
S *EXISTS. *,13)

C ENDFILE 7
RETURN

735 CONTINUE
C WRITE(6,20) SUB,JMAX

WRITE(7,20) SUB,JMAX
C ENDFILE 7

20 FORMAT(A7,* ERRCR *,13)
DO 750 J=I,JMAX

I R2=[IR(2.J)

C ENDFILE 7
750 CONTINUE

CALL MESSAOC(7HRECOVER,7HSELECT

A- 27

CALL SELECT(-1,JMAX,XR,YR,IRXW,YW,IWl)
CALL MESSAGA (7HRECOVER)
CALL MESSAGR(7HRECOVER)
RETURN
END
SUBROUT INE MESSAGR (NAME)

C
C MESSAGR IS CALLED MANY PLACES. IT LEAVES RETURN MESSAG3ES

C WRITE(6. 10) NAME

C ENDFILE 6
WRITE(7,10) NAME

C ENDFILE 7
C WRITE(8.10) NAME

10 FORMAT(A7,* RETURNS x)
RETURN
END

A-28

SUBROUTINE CENTRD(I1,I2,X,Y,A,AXAY,AXX.AYY,AXY)

C CENTRD CALCULATES THE AREA,AND FIRST MOMENTS AND VALUES
C PROPORTIONAL TO THE SECOND MOMENTS OF A POLYGON
C WHOSE DISTINCT VERTICES ARE STORED IN IUCALC OUTPUT FORMAT
C IN X(l),Y(I),I=I1,12.
C CENTRD IS CALLED BY GOLDSEC AND MOM.
C

DIMENSION X(1),Y(l)
CALL MESSAGA(7HCENTRD
122=12-2
A=AX=AY=AXX=AYY=AXY=O.
DO 50 1=11,122
BX=X(1+1) -X(Ii)
BY=Y(1+1)-Y(Ii)
CX=X CI+2) -X(II)
CY=Y(I+2)-Y(Il)
Al 0. 5x CX*~BY-BXwCY)
A=A+Al
XI=X(11)'$(BX+CX)/3.
YI=Y(I1)+(BY+CY)/3.
AX=AX+AI 'XI
AY=AY+AI wYJ
AXX=AXX+AI*(XI*Xl+(BX*BX-BX*CX+CXwCX)/18.I
AYY=AYY+A*(YIY+(BYBY-BYCY+CY*CY)/18.)
AXY=AXY+AI*(XIwYI+(BXwBY-0.5*(BX*CY+CX*BY)+CX*CY)/18.)4

WR0 COTIEC72)AAXAYAXAYAY

20 FORMAT(*THE OUTPUT OF CENTRD IS Nc/(5G15.5))
CALL MESSAGR(7FHCENTRD
RETURN
END

SUBROUTINE MESSAGA(NAME)
C
C MESSAGA IS CALLED MANY PLACES. IT I-EAVES ANSWER MESSAGES.
C
C WRIrE(6, 10) NAME
C ENDFILE 6

WRITE(7,10) NAME
C ENDFILE 7
C WRITE(8,10) NAME

10 FORMAT(A7,* ANSWERS '
RETURN
END
SUBROUTINE MESSAGC(NAMEI ,NAME2)

C
C MESSAGC IS CAI-LED MANY PLACES. IT LEAVES CALL MESSAGES.
C
C WRITE(6,10) NAMEI,NAME2
C ENDFILE 6

WRITE(7,10) NAMEI,NAME2
C ENDFILE 7
C WRITE(8,10) NAMEI,NAME2

10 FORMAT(A7,w CALLS *,A7)
RETURN
END
REAL FUNCTION NUSCALECSCALE,INC)

C
C NUSCALE IS CALLED BY GOLDSEC.
C NUSCALE USES SCALE AND INC TO GENERATE THE NEXT TERM IN THE SEQUENCE
C

A- 29

L7

REAL I NC
NUSCALE=SCALE+I NC

SUBROUTINE RECTAN(I1,I2,X,YN,E,S,W)

C THE EXTREME X(COORDINATES IN W (=WEST) AND E (=EAST) AND THE EXTREME
C Y COORDINATES IN N (-NORTH) AND S (=SOUTH),
C (X(I),Y(I),I=11,I2) ARE DIST1INCT VERTICES OF P
C RECTAN IS CALLED BY LANDEF, POSINT, AND REMAIN.

REAL W,E,N,S
DIMENSION X(1),Y(1)
CALL MESSAGA(7HRECTAN

DLEWRITE(7, 12)(X(I),Y(I), I 11.2) ~
12 FORMAT(* INPUT TO RECTAN*,/5(G13.6,Gl3.6))

EP=0. 0001
W=E=X(11)
N=S=Y(IIi)
Il11= 1+1
DO 1000 1=111,12

PX=X(I)
PY=Y(I)
IF(PX.LE.W-EP) W=PX
IF(PX.GE.E+EP) E=PX
IF(PY.LE.S-EP) S=PY
IF(PY.GE.N+EP) N=PY

1000 CONTINUE
C WRITE(8,15) N,E,S,W
C WRITE(6,15) N,E,S,W
C ENDFILE 6

WRITE(7, 15) N,E,S,W
C ENDFILE 7

15 FORMAT(*NORTHI=*,G15.5,*iEAST=*,G15.5,*SOUTH=*,Gl5.5,wWEST=x,
s G15.5)

CALL MESSAGR(7HRECTAN
RETURN
END
LOGICAL FUNCTION MINIMAX(N E,S W,LN,LE,LS,LW)

C
C MINIMAX DETERMINES IF THE RECTANGL-ES GIVEN BY (WN,E,S) AND
C (LW,LN,LE,LS) OVERLAP. IT IS USED TO PRESCREEN POSITION POL.YGONS AND
C LAND MASSES. MINIMAX =T. IF THERE IS NO OVERLAP, =F. OTHERWISE.
C THIS TEST IS FROM GilO0I,W.K_ P. 158; EXCEPT IF THE ONLY OVERLAP OCCURS
C BETWEEN BOUNDIARIES OF THC RECTANGIPS, MINIMAX= .T.
C MINIMAX IS CALLED BY POSINT, REMAIN, MOVECEN, NEWCEN.
C

REAL W, E, N,5, LW, LE, LN, LS
CALL MESSAGA(7HMI NIMAX)
MINIMAX=.F.
EP=0. 01
IF((E.LE.LW+EP).OR.(LE.LE.W+EPI.OR.(N.LE.LS+EP).OR (LN.LE S+EP))

s MINIMAX=.TRUE.

C WRITE(6,20) MINIMAXL
C ENOFILE 6

WRITE(7,20) MINIMAX
C ENDFILE 7
C WRITE(8,20) MINIMAX

20 FORMAT(*MINIMAX=*,L3)
CALI. MESSAGR (7HM INI MAX)

A- 30

A--im

RETURN
END
SUBROUTINE POSINT(XPC,YPC,JCI,LAXLAY,LIA,LIBLAN,LN,LE,LS,LW,

S XW,YW,IW,RX,RY,IR,XS,YS,IS,LANIHIT,INC,CL.OSE,FLAG,XWO,YWO,NUM,
$ REM, IREM, INUM, PC, PP)

C
C POSL NT, GIVEN A POSITION POLYGON AND LAND MASSES, DETERMINES THE
C POLYGON(S) WHICH CONSERVE AREA YET INTERSECT NO LAND.
C POSINT IS CALLED BY CONCLDE.
C

DIMENSION LIA(1), LIB~), XPC(1), YPC(1), XW(1), YW(I),
$ IW(2,1),RX(l),RY(l),IR(2,1),XS(l),YS(1l)IS(2,I),WK(300),
s XWO(l),YWO(1),NUM(2,1), INUM(l),AREAS(50)

INTEGER REM(2,1)
REAL LAX(I) ,LAYC 1) ,LW(I) ,L.E(11, LN(I, LS(I), INC, NORTH, EAST, SOUTH,

$ WEST
LOGICAL MINIMAX,FLAG,FLAGI,L-ANINT

C
C XPC,YPC,1CI CONTAINS THE CURRENT POSITION POLYGON
C

CAL. MESSAGA(7HPOSINT
CALL MESSAGC(7HPOSINT ,7HRECTAN

C
C DETERMINE CIRCUMSCRIBING RECTANGLE OF XPC,YPC
C

CALL RECTAN(1,IC1,XPC,YPC,NORTH,EAST,SOUTH,WEST)
CALL MESSAGA(7HPOSINT

C

FLA01=.T.
LANI NT=.T.
00 1000 J=1,LAN

C
C TEST FOR OVERLAP OF CIRCUMSCRIBING RECTANGLE OF (XPC.YPC) AND
C CIRCUMSCRIBING RECTANGLE OF (LAX(I),LAY(I)) I=LIA(J),LIB(J).
C

CALL MESSAGC(7HPOSINT ,7HMINIMAX)
IF(MINIMAX(NORTH,EAST,SOUTH,WEST,LN(J),LE(J) ,LS(J),LW(J)))

$ GOTO 900
C
C TEST FOR OVERLAP OF (XPC,YPC) AND POSSIBLE (LAX(i),LAYWl)]=LIA(J),
C LIB(J).
C

I 1=LIA(J)

DO 100 IN=11,12
I=IN-I 1+1
XW(I)TLAX(IN)
YW(I)rLAY(IN)

?00 CONTINUE
IW1=12-I 1+1
CALL MESSAGC(7HPOSINT ,7HIUCALC
CALL IUCALC(XW,YW~IW1,XPC,YPCICI,2,WK,300,JMAX,iS,20,XS,YS,

s 200)
CALL MESSAGA(7HPOSINT
IFCJMAX.LT.O) 100,400

300 CONTINUE
WRITECS,40) JJMAX
WRITE(6,40) J,JMAX

C ENDFILE 6

A- 31

WRITE(7,40) J,JMAX
C ENDFILE 7

40 FORMAT(*IUCALC ERROR IN POSINT. J= *,I3,* JMAX= *,I3)
STOP 15

400 CONTINUE
C WRITE(8,45) J,JMAX
C WRITE(6,4S) JJMAX
C ENOFILE 6

WRITE(7,45) J,JMAX
C ENDFILE 7

45 FORMAT(*J= *,13,*JMAX= *,13)
C
C JMAX.EQO WHEN THE INTERSECTION IS EMPTY, OR THE INPUT POLYGONS TO
C IUCALC ARE IDENTICAL. THE ASSUMPTION HERE IS THAT THE INPUT
C POLYGONS ARE NEVER IDENTICAL.
C

IF(JMAX.EQO) GOTO 900

C A NONEMPTY INTERSECTION RESULTS.
C (XWO,YWO) CONTAINS THE POSITON POLYGONS DETERMINED BY THE INTERACTION
C OF (XPC,YPC) WITH THE LAND MASSES (LAX,LAY). IREM IS THE INDEX OF THE
C OPTIMAL SET OF REMAINDER POLYGONS. MAXPOL IS THE NUMBER IN THE SET.
C

IF(PP*PC.GT.O.) 600,700 4
600 CONTINUE

CALL MESSAGC(7HPOSINT ,7HOOLDSEC)
CALL GOLDSEC(XPC,YPC,IC1,LAX,L-AY,LIA,LIB,LAN,XW,YW,IW,XS,YS,

s ISRX,RY,IR,INCLN,LE,LS,LW,CLOSE,FLAG,XWO,YWO,IUM,REM,
s IREM, INUM,AREAS)

CALL MESSAGA(7HPOSINT
CALL MESSAGR(7HPOSINT
RETURN

700 CONTINUE
CALL MESSAGC(7HPOSINT ,7HREMAIN
CALL REMAIN(XS,YS, IS,LAX,LAY,LIA,LIB,LAN,XW,YW, 1W,

s RX,RY,IP,LN,LE,LS,LW,1.,XPC,YPC,1C1,0.,O.,XWO,YWO,
s NUM,REM,1,AREAS,INUM)

CALL MESSAGA(7HPOSINT
I REM~ 1
CALL MESSAGR(7HPOSINT
RETURN

900 CONTINUE
1000 CONTINUE

C
C XPC,YPC INTERSECTS NO LAND MASS.
C

LANINT=. F.
C WRITE(8,60)
C WRITE(6,60)
C ENOFILE 6

WRI TE(7,60)
C ENDFILE 7

60 FORMAT(*XPC,YPC INTERSECTS NO LAND MASS.*)
CALL MESSAGR(7HPOSINT)
RETURN
END

SUBROUTINE NUCUMUN(NGONI,NGON2, IA, IB,X,Y,
S XW,YW,XS,YS,IS,IW,XCEN,YCEN,WK,
S POX,PGY,FLAG,RX,RY,IR1,JMAX)

C
C GIVEN NGON1 AND NGON2, TWO POLYGONS REPRESENTING POSITIVE INFORMATION,

A- 32

C GENERATE PIAAM. START WITH A VERTEX KNOWN TO BE ON BOUNDARY OF PIAAM,

C IN THIS CASE THE MOST NORTH VERTX OF NGONI EVALUATED AT THE MOST
C NORTH VERTEX OF NGON2. THE NEXT VERTEX ON THE BOUNDARY OF PIAAM IS
C USUALLY EITHER THE NEXT VERTEX OF NGONI EVALUATED AT THE SAME VERTEX
C OF NGON2, OR THE SAME VERTEX OF NGONI EVALUATD AT THE NEXT VERTEX
C OF NGON2. CHOOSE THE FORMER WHEN IT IS TO THE LEFT OF THE LATTER,
C OTHERWISE CHOOSE THE LATTER. TO ALLOW FOR THE CASES WHEN NEITHER
C ABOVE VERTEX IS NEXT, UNION TO THE POLYGON FORMED BY THE ABOVE
C NGON1 EVALUATD AT ALL VERTICES OF NGONN2.
C

LOGICAL FLAG, FLAGI
DIMENSION XCI) ,Y(1), IAC1), IB(1) ,XW(1) ,YW(1), IW(2,1) ,XS(I),

S YS(l),PX(50),PY(50),WK(I),PGX(l),PGY(I), IPAR(2,1),
S PARX(3),PARY(3),RX(1),RY(1I, IS(2,1),XCEN(1),YCEN(1)

C
C PGX,PGY CONTAINS X,Y COORDINATES OF NGON2. M2 IS THE NUMBER OF
C DIFFERENT VERTICES OF NGON2. RX,RY CONTAINS THE POLYGON DETERMINED
C THE "USUALLY THE NEXT VERTEX" ALGORITHM, IR1 IS THE NUMBER

C OF ENTRIES IN RX,RY. THE FINAL NUCUMUN RESULT IS STORED IN RX,RY.

CALL MESSAGA(7HNUCUMUN)

DATA IPAR(I, 1), IPAR(2, 1)/0,3/

IB1=IB(NGON1)
Ml=]B - IAl
M2=IB(NGON2) -IA(NGON2)

EP=1.
E.001

FLAG=. T.

C DETERMINE MOST NORTH VERTEX OF PIAAM.
C

CALL MESSAGC(7HNUCUMUN,7HNORTH
NONGON2=NON=NORTH(1,M2,PGY)
NOJNGON1=NORTH(1A1,IB1-1,Y)
I1=1
XC=XCEN(NGON1)
YC='YCEN(NGONI)
WRITE(7,5) XC,YC

5 FORMAT(*THE CENTROID OF NGON1 IS *,2G15.5)
XC1 =PGX(NONGON2) -XC
YC1 'PGY (NONGON2) -YC
XC2=PGX(NONCON2+1)-XC
YC2=PGY(NONGON2+1)-YC
RX I)=ROU(X(NOtNGON1)+XCI)
RY(I)ROU(Y(NONGON1)+YCl)
WRITE(7, 10) 1,RX(lI),RY(I)

C ENDFILE 7
10 FORMAT(*THE *,13,w ENTRY IN RX,RY IS *,2GIb.5)

C
C DETERMINE CANDIDATES FOR NEXT VERTEX.
C

MX=(M1+1 3m(M2+1)
DO 2999 1=2,MX
PARX(1) RX(I1-1 1
PARY (1) =RY (1-1)

C
C DETERMINE THE NEXT VERTEX OF NGON1 EVALUATED AT THE VERTEX OF
C NGON2 ASSOCIATED WITH RXI-1),RY(I-1).

NEXTI =NONGON1 +1

A-33

I F(NEXTI.GT.IBI) NEXTI=IA1+-MOD(NEXT1-IA1,IB1-IAl)
WRITE(7,15) NEXTI

15 FORMAT(sNEXTI= *,13)
C ENOFILE 7

PARX(2)=ROU(X(NEXTI)+XCl)
PARY(2)=ROU(Y(NEXTI)+YCl)
WRITE(7,20) PARX(2) ,PARY(2)

20 FORMAT(*PARX(2),PARY:2) IS *,2GI5.5)
C ENOFILE 7
C
C DETERMINE THE SAME VERTEX OF NGON1 EVALUATED AT THE NEXT VERTEX OF
C NGON2.
C

PARX(3) =ROU(X(NONGONI)+XC2)
PARY(3)=ROLI(Y(NONGON1)4-YC2)
WRI TEC 7,30) PARX(3), PARY(3)

30 FORMAT(*PARX(3),PARY(3) IS '*,2G15.5)
C ENDFILE 7

A=AREA(PARX,PARY, IPAR, 1)
IF(ABS(A).GT.E) GOTO 1000

F2X=PARX(2)-RX(1-1)
F2Y=PARY(2)-RY(1-1)
F3X=PARX(3)-RX(I-1)
F3Y=PARY(3) -RY(1-1)
D2=SQRT(F2X*F2X+F2'f*F2Y)
D3=SORT(F3X*F3X+F3Y*F3Y) I
IF(D?.GE. D3+E) 1500, 2000

1000 CONTINUE
IF(A.GE.E) 1500,2000

1500 CONTINUE
C
C NEXT VERTEX IS (PARX(2),PARY(2)). THE NEXT VERTEX OF NGONI EVALUATED AT
C THE VERTEX OF NGON2 ASfSOCIATED WITH RX,(I-1),RY(I-1).
C

RX I)=PARX(2)
RY I)=PARY(2)
NONGONI =NEXT1
WRITE(7, 10) 1 ,RX(I) ,RY(I)
IF((ABS(RX(I)-RX(l)).LE.EP).AND.(ABS(RY(I)-RY(l)).LE.EP))

$ GOTO 3000
GOTO 2999

2000 CONTINUE
C
C NEXT VERTEX IS (PARX(3),PARY(3)). THE SAME VERTEX OF NGON1 EVALUATED AT

C THE NEXT VERTEX OF NGON2.
C ~FRA(NN02 ,3

RX(I)PARX(3)
RY I)=PARY(3)
WRI TE 7, 10) I ,RX I), RY (I)
IF((ABS(RX(l)-RX(l)).LE.EP).ANO.(ABS(RY(I)-RY(1)).LE.EP))

S GOTO 3000
NONG0N2=NONGON2+ 1
IF(NONGON2.GT.M2) NONG0N2=M0D(NONGON2,M2)
WRITE(7,35) NONGON2

C ENDFILE 7
XC1 =PGX(NONGON2) -XC
YC1 =PGY(N0NG0N2) -YC
XC2=PGX(NONGON2+1)-XC
YC2=PGY(NONGON2+1 I-YC

2999 CONTINUE

A- 34

FLAG=. F.
WRITE(6,40)
WRI TE(7,40)
WRI TEC 8,40)

40 FORMAT(*NUCUMUN ERROR m
CALL MESSAGR(7tNUCUMUN)
RETURN

3000 CONTINUE
C
C UNION TO THE POLYGON FORMED BY THE ABOVE OPERATIONS NGONI EVALUATED
C AT ALL VERTICES OF NGON2.
C

lR1=Il
WRI TEC 7,50) I RI,(RX(I),*RY (I), 1.I Ri)

50 FORMAT(*RX,RY HAS *,3, ENTRIES. (RX,RY) IS *,/5(G13.5,013.5))
C ENDFILE 7

DO 5000 J=1,M2
XCI =PGX(J) -XC
YCI =PGY CJ) -YC
DO 3500 I=I,M1
IAI 1=IAi+I -1
PX(I)ROU(X(IAII1)+XCi)
PY I)=ROU(Y(IAl11)+YCI)

3500 CONTINUE
CALL MESSAGC(7HNUCUMUN,7HPREIU
SUB =7HNUCUMUN
CALL PREIU(RX,RY,IRi,PX,PY,M1,1,IS,XS,YS,SUB,FLAG,FLAG1,JMAX)
CALI- MESSAGA(7HNUCUMUN)
IF(.NOT.FLAG) RETURN

5000 CONTINUE
WRI TE(7,60)

60 FORMAT(*THE FINAL OUTPUT OF NUCUMUN IS ~
C ENOFILE 7

CALL MESSAGR(C7HNLJCUMUN)
RE TURN
END
FUNCTCON NORTHUIl,i2,Y)

C
C NORTH,GIVEN POLYGON (I1,12,X,Y), RETURNS THE INDEX OF THE
C MOST NORTH- VERTEX OF THE POLYGON. THE NUMPER OF DISTINCT
C VERTICES IN THE POLYGON IS 12-11+1.
C

DIMENSION Y(i)
REAL N
CALL MESSAGA(7FINORTH
EP=0. 0001
N=Y(II)
NORTH' Ii
WRITE(7, 10) (Y(I I, I'l, 12)

10 FDRMAT(*INPUT TO NORTH IS *,/(G13.6,013.6))
111=11+1
DO 1000 l'Ili,12
PY=Y(I)
IF(PY.LT.N+EP) GOTO 1000
N=PY
NORTH' I

1000 CONTINUE
WRITE(7,20) NORTH,N

20 FORMATC*NORTH OUTPUT. NORTH -m,13,w N=*,0i5.5)
CALL MESSAGR(7HNORTH

A-35

SUBROUTINE GOLDSEC(XPC,YPC,!C1,LAX,LAY,LIA,LIB,LAN,XW,YW,
$ IW,XS,YS,IS,RX,RY,IR,INC,L.N,LE,L.S,LW,CLOSE,FLAG,
$ XWO,YWO,NUM, REM,IREMINUMAREAS)

C
C GOLDSEC USES THE METHOD OF GOLDEN SECTIONS TO GENERATE THE RESCALED
C POLYGON 0 FROM XPC,YPC WHERE THE AREA OF 0 OUTSIDE OF THE LAND MASSES
C IS CLOSE TO THE ENTIRE AREA OF XPC,YPC. THE PARTS OF
C 0 OUTSIDE OF THE LAND MASSES ARE CALLED THE REMAINDER POLYGONS
C AND ARE RETURNED IN XWO,YWO. IREM IS THE INDEX OF THE FINAL
C SET OF REMAINDER POLYGONS. INUM(IREM) IS THE INDEX OF THE LARGEST
C POLYGON IN SET IREM.
C NUM(1,J) IS THE OFFSET OF THE INDEX OF THE JTH POLYGON IN XWO,YWO.
C NUM(2,J) IS THE NUMBER OF VERTICES IN POLYGON J.
C REM(I,K) IS THE OFFSET OF THE INDEX OF THE KTH REMAINDER SET IN NUM.
C REM(2,K) IS THE NUMBER OF POLYGONS IN REMAINDER SET K.
C POINT(1) IS USUALLY THE REMlAINDER SET ASSOCIATED WITH WI,I=1 OR 2.
C A IS THE AREA OF XPC,YPC.
C AREAS(K) IS THE 4REA OF THE LARGEST POLYGON IN REMAINDER SET K.
C WHEN -A*CLOSE @ AREAS(K)-A 0 A*CLOSE, THE ALGORITHM STOPS WITH THE
C REMAINDER SET K AND THE REMAINDER POLYGON INUM(K).
C IN THE INITIALIZING PHASE OF THE ALGORITHM, SCALE=I. AND THE AREAS(1)
C IS SUCH THAT AREAS(l) < A.
C FURTHERMORE, IN THIS PHASE THE ALGORITHM MUST FIND A QUANTITY, NEXT,
C S.T. THE CORRESPONDING AREAS SATISFIES THE STOPPING CRITERIA OR
C A*CLOSE< AREAS-A.
C GOLOSEC IS CALLED BY POSINT.
C

REAL LAX(i),LAY(1),Nt.SCAI..F,NEXT,LENGTH, INC,LN(1),LE(1),LS(l),
$ LW(l)

INTEGER REM(2,I),POINT(2)
DIMENSION XPC(I),YPC(1),LIA(l),LIB(1),INUM(1),

s XS(1),YS(f),IS(2,1),RX(1),RY(1),IR(2,1),
S XW(1),YW(I),IW(2. I),
$ XWO(1),YWO(1),NUM(2,1),AREAS(1)

LOGICAL FLAG
CALL MESSAGA(7HGOLDSEC)
CALL MESSAGC(7HGOLDSEC,7HCENTRD I
CALL CENTRD(1,IC1,XPC,YPC,A,AX,AY,AXX,AYY,AXY)
CALL MESSAGA(7HGOLDSEC)
ACLOS=A*CLOSE
XCEN=AX/A
YCEN=AY/A

WRITE(6,8) XC!N,YCEN,ACLOS
C ENDFILE 6

WRITE(7,8) XCEN,YCEN,ACLOS
C ENDFILE 7

8 FORMAT(*XCEN=w,G15.5,*YCEN=w,G15.5,*ACLOS=*,G15.5)
FLAG=.T.
SCALE=l.
J3(1,1)=O.
EP=O.00001
KAY=5

C THE LOWER BOUND OF THE SEARCH INTERVAL IS 1. STOP OR
C DETERMINE UPPER BOUND OF THE SEARCH INTERVAL SO THAT THE
C AREA OF THE
C REMAINDER POLYGON(S),GENERATED BY THE UPPER BOUND, EXCEEDS TIlE AREA
C OF XPC,YPC.
C

LL=D
CALL MESSAGC(7HGOLDSEC,7HREMAINU)
LL=LL+

A-36

i=

CALL REMAIN(XS,YS,IS,LAX,LAY,LIA,LIB,LAN,XW,YW,IW,RX,RY,IR,
s LN,LE,LS,LW,SCALE,XPC,YPC,ICI,XCEN,YCEN,
s XWO,YWO,NUM,REM,LL-,AREAS,INUM)

CALL MESSAGAL 7HGOLDSEC)
WRICE(7,13) A,AREAS(LL)
IF(A-ACLOS.LE.AREAS(LL)) 50,100

50 CONTINUE
I REM=LL
CALL MESSAGR (7HGOL.DSEC)
RETURN

l00 CONTINUE
DO 1000 K=1,KAY
NEXT=NUSCALE(SCALE, INC)
CALL. MESSAGC (7HGOLDSEC, 7HREMAI1NU)

C
C
C

LL=LL+ 1
CALL REMAIN(XS,YS,IS,LAX,LAY,LIA,L.IB,LAN.XW,YW,IW,RX,RY,IR,

S LN,LE,LS,LW,NEXT,XPC,YPC,ICI,XCENYCEN,
S)WO,YWO,NUM,REM,LL,AREAS,INUM)

CALL MESSAGA (7HGOLDSFC)
GW1 =A-AREAS(LL)
WRITE(7,13) A,AREAS(LL),GWI

C ENOFILE 7
13 FORMAT(*INPUT POLYGON AREA=-,G15.5,*' REMAINDER POLYGON AREA=*,

S G15.5,* INPUT AREA - REMAINDER AREA=*,G15.5)
IF(ABS(GWI).LE.ACLOS) 500,600

500 CONTINUE
I REM=LL
CALL. MESSAGR(7HGOLDSEC)
RE TURN

600 CONTINUE
C
C CHECK TO SEE IF NEXT IS SUCH THAT METHOD OF GOLDEN SECTIONS CAN BE
C APPLIED

IF(A+ACLOS.LE AREAS(L.L)) GOTO 1100
SCALE= NEXT

1000 CONTINUE
WRITE (6, 15)

C ENOFILE 6
WRITE(8, 15)

15 FORMAT(*AN UPPER BOUND OF THE SEARCH INTERVAL HAS NOT BEEN
S vDETERMINED. RETURN CONTROL TO FUNCTION SEL.ECTION (Y OR N) *

READ(5i,2Ol 0
WRITE(6,20) Q
WRITE(7,20) 0
WRITE(8,20) 0

20 FORM-ATA1,12)
IF(Q.EQ. IHY) FLAG=.F.
IF(.NOT.FLAG) RETURN
WR ITE (6, 25)
WR ITE (6,27)

C ENOFILE 6
WR ITE (8, 25)
WRI TEL 8,27)

25 FORMATI*CALCULATION OF THE UP'PER BOUND OF THE SEARCH INTERVAL*,
S * WILL CONTINUE.*)

2'7 FORMAT(*CHANGE SCALE FACTOR INCREMENT (Y OR N) '

S s FOLLOW Y IMMEDIATELY WITH 2 DIGIT POSITIVE INTEGERsx)
READ(5,20) Q,NUINC

A-37

WRIT(6,2) QUII
WRITE(6,20) Q,NUINC
WRITE(7,20) Q,NUINC

I F(Q.EQ.lHY) INC=NUINC
GOTO 100

1100 CONTINUE .
C
C THE METHOD OF GOLDEN SECTIONS APPLIED TO THE SEARCH INTERVAL
C [SCALE, NEXT] FOLLOWS. SEE ZANGWILL P. 121.

C

C A FUNCTION EVALUATION CONSISTS OF THE FOLLOWING STEPS. GENERATE THE

C POLYGONS OF 0(W). DETERMINE THE AREA OF THE REMAINDER POLYGONS.
KK=0

1150 CONTINUE
DO 3000 K=1,KAY
KK=KK+1
IF(KK.E .1) 1200, 1500

CI
C ON THE FIRST ITERATION THE PROGRAM BRANCHES TO THE FOLLOWING, IN ORDER

C TO INITIALIZE THE ALGORITHM.
C

1200 CONTINUE i
FL=F1 "(NEXT-SCALE)
WI :SCALE+FL
W2=NEXT-FL
CALL MESSAGC(7HGOLDSEC, 7HREMAING)
LL=LL+1
CALL REMAIN(XS,YSISLAX,LAY,LIA,LIB,LAN,XW,YW,IW,RX,RY,IR,

s LN,LE,LS,LW,Wl,XPC,YPC,1CI,XCEN,YCEN,
$ XWO,YWO,NUM,REM,LL,AREAS,INUM)

CALL MESSAGA(7HGOLDSEC)
GW1=ABS(A-AREAS(LL))
WRITE(7,40)A,AREAS(LL),GW1

C ENDFILE 7

C I
C CHECK FOR OPTIMALITY.

C IF(GWI.LE.ACLOS) 1300,1400

1300 CONTINUE
C
C LL IS OPTIMAL
C

I REM=LL
CALL MESSAGR(C7HGOL DSEC)
RETURN

1400 CONTINUE
C
C LL IS NOT OPTIMAL
C

POINT(1)LL
LL=LL+1
POI NT(2) =LL
CALL MESSAGC(C7HGOLDSEC, 7HREMA ING)
CALL REMAIN("S,YS,IS,LAX,LAY,LIA,LIB,LANXW,YW,IW,RX,RY,IR,

s LN,LE.LS,LW,W2,XPC,YPC,ICI,XCEN,YCEN,
$ XWO,YWO,NUM,REM,LL,AREA$, NUM)

A- 38

CALL MESSAGA(7HGOLDSEC)
40 FORMAT(*INPUT POLYGON AREA=*,G15.5,w REMAINDER POLYGON AREA=*,

s G15.5,* ABS(INPUT AREA - REMAINDER AREA)=*,G15.5)
GW2=ABS(A-AREAS(LL))
WRITE(7,40) A,AREAS(LL).GW2

C ENOFILE 7
C CHECK FOR OPTIMALITY. IF NOT OPTIMAL INCREMENT K COUNTER

IF(GW2.LE.ACLOS) 1450,2900
1450 CONTINUE

C
C LL IS OPTIMAL
C

I REM:LL
CALL MESSAGR (HGOI.DSEC)
RETURN

C
C ON ALL BUT THE FIRST ITERAION THE PROGRAM BRANCHES TO THE FOLLOWING
C FROM LABEL 1150.
C
1500 CONTINUE

C
C THE FOLLOWING IS THiE GENERAL GOLDEN SECTION ITERATION.
C
C DETERMINE THE NEXT SEARCH INTERVAL.

IF(GW2-EP.LE.GW1) 1600,2000
1600 CONTINUE

C THE NEW INTERVAL IS (W1,NEXTI.
C GENERATE DATA FOR THE NEW W2. THE NEW W1= THE OLD W2, SO THE DATA
C ASSOCIATED WITH THE NEW WI - DATA ASSOCIATED WITH OLD W2.
C

SCALE=Wl
GW1 :GW2
WOINT:W =OIN 2
PONT1 = PIN(2
W2=NEXT-F1 s(NEXT-SCALE)
CALL MESSAGC(C7HGOLDSEC. 7FREMA ING)
LL=LL+ 1
CALL REMAIN(XS,YS,IS,LAX,LAY,LIA,LIB,LAN,XW.YW,IW,RX,RY,IR,

s LN,LE,LS,LW,W2,XPC,YPC,IC1,XCEN,YCEN,
s XWO,YWO,NUM,REM,LL,AREAS, IUM)

CALL MESSAGA(C7HGOLDSEC)
GW2=ABS(A-AREAS(LL))
WRITE(7,40) A,AREAS(LL),GW2

C ENDFILE 7
C CHECK FOR OPTIMALITY IF NJOT OPTIMAL, UPDATE POINT AND INCREMENT K.

IF(GW2.-E.ACLOS) 1700,1800
1700 CONTINUE

I REM=LL
CALL MESSAGR(C7HGOLDSEC)
RETURN

1800 CONrINUE
POINT (2) =LL
GOTO 2900

C
C WHEN GW2-EP.GT.GW1 THE PROGRAM BRANCHES TO THE FOLLOWING FROM LABEL
C 1500. THE NEW INTERVAL IS (SCAI-E,W23.
C GENERATE DATA FOR THE NEW Wi. THE NEW W2 THE OLD Wi, SO
C THE DATA ASSOCIATED WITH THE NEW W2 DATA ASSOCIATED WITH OLD WI,
C
2000 C3NTINUE

NEXT=W2

A- 39

GW2=GW 1
POINT(2):POINT(1)
W2=W 1
Wi =SCALE+Fi (NEXT-SCALE)
CALL MESSAGC (7HGOLDSFC, 7HREMA ING)
LL:LL+i
CALL REMAIN(XS,YS,IS,LAX,LAY,LIA,LIB,LAN,XW,YW,IW,RX,RY,IR,

s LN,LE,LS,L.W,Wi,XPC.YPC,IC1,XCEN,YCEN,
S XWO,YWO,NUM,REM,LL,AREAS,INUM)

CALL MESSAGA (7HGOLDSEC)

GWI=ABS(A-AREAS(LL))
WRITE(7,40) A,AREAS(I.L) ,GWI

C ENDFILE 7
C CHECK FOR OPTIMALITY, IF NOT OPTIMAL,UPDATE POINT AND INCREMENT K.

IF(GWI.LE.ACOSI 2200,2300
2200 CONTINUE

I REM=LL
CALL MESSAGR(7HGOLDSEC)
RETURN

2300 CONTINUE
POINT(1)LL

2900 CONT INUJE
3000 CONTINUE

C END OF DO LOOP 3000.
Gil =AREAS(P01NT(1)) /A
G22=AREAS(POI NT(2))/A
WRITE(6,60) Wi ,Gi 1,W2,G224
WRITE(7,60) Wi ,Gi 1,W2,G22

C ENDFILE 6
WRITE(8,60) Wi ,Gi 1,W2,G22

60 FORMAT(*AT Wl=*,G15.5,x THE REMAINDER AREA IS *,Gl5.5,* OF A.*,
s mAT W2=*,G15.5,x THE RfPMAINOER AREA IS *,G15.5,* OF Am*)

WRITE (6, 70)
C ENOFILE 6

WRI TE(8, 70)
70 FORMAT(*ACCEPT Wi OR W2 AS OPTIMAL (Y OR N). FOLLOW Yin,

S *IMMEDIATELY BY 01 FOR Wi, 02 FOR W2w)
READ(5,20) Q,NUINC
WRITE(6,20) 0,NUINC
WRITE(7,20) 0,NUINC
WRITE(8,20) Q,NUINC
IF(0.EQ.iHN) GOTO 4000
IF(NUINC.EO.OI) 3300,3400

3300 CONTINUE
1REM:POINT(l)
CALL MFSSAGR(7HGOL.DSEC)
RETURN

3400 CONTINUE
I REM=POI NT (2)
CALL MESSAGR(7HGOLDSEC)
RETURN

4000 CONTINUE
WR ITE (6, 80)

C ENOFILE 6
WR ITE (8, 80)

s0 FORMAT(*AREA OF THE REMAINDER POLYGON(S) IS NOT CLOSE TO m
s *AREA OF THE INPUT POI-YGON,XPC,YPC. RETURN CONTROL TO m
S *FUNCTI'31s SELECTION (Y OR N)*)

READ(5,20) 0
WRITE(6,20) 0
WRITE(7,20) 0

A-40

WRITE(8,20) 0
IF(0.EQ. iHY) FLAG=.F.

I F(.NOr.FLAG) RETURN
WRITE(6,90)

C ENDFILE 6
WRI TE(8, go)

90 FORMAT(*THE GOLDEN SECTION ITERATIONS WILL CONTINUE*)
GOTO 1150
RETURN
END
SUBROUTINE INTO(XS,YS, IS,JMIN,JMAX,XWOYWO,NUM,REM,LL,MAXPOL, IP,
$ IL)

C
C INTO INSERTS THE CONTENTS OF (XS(IS(1,JO)+I),YS(IS(1,JO)+I)),
C I=1,IS(2,JO), JO=JMIN,JMAX, IN (X WO(NUM(1,KO)+I),YWO(NUM(1,I<OJ+I)),
C I=1,NUM(2,KO), KO=REM(1,LL)+MAXPOL+1,REM(1,LL)+MAXPOL+JMAX-JMIN+1,
C WHERE NUM(2,KOh=IS(2,JO). SEE COMMENTS OF REMAIN FOR DEFINITIONS OF
C REM AND NUM. WHEN INTO IS CALLED, MAXPOL IS THE NUMBER OF POLYGONS IN
C POSITION POLYGONS 1 TO IP-1 BUT NOT IN LAND 1 TO IL.
C THUS MAXPOL=flEM(2,LL) AT ITERATION IP-1.

DIMENSION XS(1),YS(1), IS(2,1LXWO(1),YWO(l),NUM(2, 1)
INTEGER REM(2,ILREM1,REMII
CALL MESSAGA(7HINTO

C
C A DATA STrATEMENT IN MOVMENT INITIAI-IZES REM(I,1)=NUM(I,I)=0.

c REM(1,LL+1) IS FIXED WHEN THE FINAL NUMBER OF POLYGONS IN SET LL IS4
C KNOWN. THUS AT THE END OF THIS ROUTINE fREM(1,LL+1) IS COMPUTED.

C REM(2,LL) VARIES AT EACH CALL TO INTO. REM(2,LL) SHOULD BE SET TO 0
C EACH TIME IL INCREASES. EACH TIME IL INCREASES IP IS RESET TO 1
C AND MAXPOL IS RESET TO 0, THUS IP=1 IS THE TEST TO SET REM(2,LL-) TO 0.
C AS IL IS CONSTANT, AND EACH TIME IP INCREASES (MAXPOL IS NONZERO HERE)
C REM(2,LL) INCREASES BY JMAX EACH TIME INTO IS CALLED.
C NUM(1,REM(1,LL+I)+1) IS FIXED WHEN THE FINAL NUMBER OF VERTICES IN SET
C LL IS KNOWN. THUS NUM(1,REM(1,LL+1)+1) IS COMPUTED AT THE END OF THIS
C ROUTINE.
C

REM1=REM(1 ,LL)
IF(IP.EO. 1) REM(2,LL):O
REM(2,LL)=REM(2,LL)+JMAX-JMIN+1

C
C KO IS THE NUMBER OF THE POLYGON CURRENTLY BEING TRANSFERRED TO
C (XWO,YWO).
C

KO=REM1 +MAXPOL
WRITE(7, 30)

30 FORMAT(*THIS OUTPUT IS FROM ROUTINE INTO.*)
WRITE(7,40) LL,IL,IP,MAXPOL,JMIN,JMAX,LL-,REM(1,LL),I-L,REM(2,LL)

C ENDFILE 7
40 FORMAT(*-LL-,13,* [L=*,13,x IP=*,13,* MAXPOL=*,13,w JMIN=*,13,

DO 3000 JO=JMIN,JMAX
KO=KO+ 1
ISI ISI , JO)

C WRITE(7,45) IS(1,JO)
C 45 FORMAT(a151,IS(1,JO)=g,18)

NUM1=NUM(1,KO)
NUM(2, KO)=I S2= IS(Z, JO)

C 47 FORMAT(wIS2=lS(2,JO)=*,18)
C WRITE(7,47) IS(2,JO)

A-41I

C WRITEC7,48) (XS(IS1+I),YS(IS1+1), 1=1, 2)
C 48 FORMAT(w(XS,YS) ISx,/(5(G13.5,G13.5'u)

NUM(1,KO+1)=NUM(1,KO) *152
DO 2000 I"1,1S2

XWO(NUMl+I)=XS(ISI+I)
YWO(NUM1+I)=YS(IS1+I)

2000 CONTINUE
WRITE(7,50) JO,KO,NUM(1,KO),KO,NUM(2,KO)

50 FORMAT(*JO= *,13,*NUM(l,x,I3,*)= *,I3,*NUM(2,w,I3,*)= *,13,
s *THE CONTENTS OF XWO,YWO ASSOCIATED WITH THESE INDICES AREw)

WRITE(7,60) (XWO(NUM1+I),YWO(NUM1+I), I1, S2)
C 60 ENOFILE 7

60 FORMAT(5(G13.6,Gl3.6))
3000 CONTINUE

C
C COMPUTE REM(1,LL+1),NUM(1,REMHI,LL+1H-1),MAXPOL

REM(1,LL+1)=REM11=REMU1,LL)i-REM(2,LL)
NUM(1,REM11+1)=NUMUI,REMII)+NUM,12,REMII)
MAXPOL=MAXPOL-+JMAX -JM IN+ 1
CALL MESSAGR(7HINTO
RETURN
END

SUBROUTINE MOVFCEN(M,NJA,JBXY.IA,IB,P,SE,KE,K-A,XW,YW,J,ILA,
S JLA,XCEN,YCEN,H,LAX,LAYLIIA,LIB,LAN,LAND,LN,LE,LS,LW, INPUT,
S COUNT,FLAG)

C MOVECEN IS CALLED BY POL THE
C VELOCITY DISTRIBUTION IS MOVED TO TIME MI-i ACCORDING TO THE POSITION
C DISTRIBUTION AT TIME M+1 AND MK, L-AND INTERACTIONS ARE CONSIDERED. A MOVED I

C VELOCITY POLYGON WHOSE CENTROID IS CONTAINED IN A LAND MASS IS REPLACED BY

C TWO VELOCITY POLYGONS. MOREOVER T HE CENTROIDS OF THE
C REPLACEMENT POLYGONS ARE CONTAINED IN NO LAND MASS.

DIMENSION JA(2,5,9),JB(2,5,91,X(1),Y(1), IA(1), IB(1),P(1),
S SE(1),H(1),KE(2,5,9),XW(1),YW(1),XCEN(1),YCEN(1),VX(2),VY(2),
S CPROB(2),LIA(l),LIBWl
REAL LAX(1), LAYC 1), L.N~ 1), LE(1), LS(1), LW(1)
INTEGER COUNT, ENSYD2, ENS
LOGICAL LAND,INPUT(2,5,9),FL-AG,MINIlMAX
CALL MESSAGA (7HMOVECEN.
WRI rE(6, 10)
WRITE(8, 10)

10 FORMAT(wSLIN 2*)
Ml "M+1

C FIND,MK, THE MOST RECENT INPUT CENTPOID DISTRIBUTION IN ORDER TO
C MAINTAIN VELOCITY TENDENCIES.
C

MK "M
FLAG= T.
IF((.NOT.LAND).OR.(INPOT(2,M,N))) GOTO 300
DO ZOO ME'2,M
MK=M-ME I-i
IF(INPUT2,MK,N)) GOTO 300

200 CONTINUE
WRITE(6, 15)
WR ITE(C7, 15)

C ENDFILE 6
C ENDFILE 7

WRITECS, 15)
15 FORMAT(-VELOCITY DISTRIBUTION IS UNDEFINED*)

FLAG= F.

A-42

IF(.NOT.FLAG) RETURN
300 CONTINUE

SE1=-SE(1+KE(1, MK))+SE(1+KE(1, Ml N))
SE2: -SEC 2i-KE(1, MK N))+SE(2+KE(1, Ml, N))
JJ=0
JA2=JA(2,MK,N)
JB2=JB(2,MK,N)
DO 4000 J1=JA2,JB2
IA1=IA(JI)
IBI=IB(Jl)
IWI=IBI -I A1+1
IF(.NOT.LAND) GOTO 3100
XO=XCEN(JI) rSEI
YO=YCEN(J1)+SE2

DO 3000 IL=1,LAN
WRITE(6,20) JI,IL

C ENDFILE 6
WRITE(7,20) Jl,IL

C ENDFILE 7
WRITE(8,20) J1,IL

20 FORMAT(* MOVECEN CALLS MINIMAX*.2(I3))
IF(MINIMAX(YO,XO,YO,XO,LN(IL),LE(IL),LS(IL),LW(IL)))

S GOTO 2900
C
C TEST FOR (XO,YO) CONTAINED IN LAND MASS IL,
C SINCE (XO,YO) IS CONTAINED IN THE RECTANGLE OF LAND MASS IL.
C IF NOT, INCREASE IL.
C

LiLI-A (IL)

DO 400 I=Ll,L2
LO'I -Ll+l
XW(LO)=LAX(I)
YW(LO)=LAY(I)

400 CONTINUE
C WRITE(8,25) J1,IL
C WRITE(6,25) JI,IL
C ENDFILE 6

WRITE(7,25) J1,IL
C ENDFILE 7

25 FORMAT(* MOVECEN CALLS ENSYD2*,2(13))
ENS:ENSYD2(DBLE(XO),DBLE(YO),XW,YW,L-O)
WRITE(7,27) ENS

27 FORMAT(*ENSYD2=*, 12)
IF(ENS.EQO) GOTO 2900

C WRIrE(8,30) Jl,IL
C WRIrE(6,30) J1,IL
C ENDFILE 6

30 FORMAT(*AFTER MOTION CENTROID OF *,I3,,* IS IN LAND MASS ~
S 13)

C COMP'UTE REPLACEMENT POLYGONS.
C COURSE CHANGE PROBABILITIES ADD TO 1. THESE PROBABILITES
C DISTRIBUTE THE WEIGHT OF POLYGON Ji AMONG THE TWO VELOCITY POLYGONS
C COMPUTED BY THE CODE BELOW TO LABEL 1000.
C

WRI TEC 6,40)
C ENDFILE 6

WRI TE(8,40)
40 FORMAT(*PROBABILITY OF COURSE CHANGE--COUNTERCLOCKWISE *

S /* FIO.5*)
READ(5,50) CPROBII)

A-43

50 FORMAT(F 10.5)
WRITE(6,60) CPROB(1),CPROB(2)

C ENDFILE 6
WRITEC8,60) CPROB(1),CPROB(2)

60 FORMAT(*COUNTERCLOCKWISE COURSE PROBABILITY= *,FIO.5,
S * ,CLOCKWISE COURSE PROBABILITY= N,FIO.5)

c CALCULATE NEW VELOCITY POLYGONS

C
WRITE(7,60) CPROB(l),CPROB(2)

C ENOFILE 7
C
C EACH VELOCITY POLYGON, BEING COMPUTED, HAS CENTROID GIVEN BY
C NEWCEN. (VX(l),VY(l)) CONTAINS THE COUNTERCLOCKWISE (OR LEFT)
C RESULTING CENTROID, (VX(2),VY(2)) CONTAINS THE CLOCKWISE (OR RIGHT)
C RESULTING CENTROID. (VX,VY) ARE COMPUTED TO BE CONTAINED IN NO LAND
C MASS AND CLOSE TO (XO,YO).
C

CALL MESSAGC(7fMOVECEN, 7HNEWCEN
CALL NEWCEN(XO,YO,LAX,L.AY,LIA,LIF3,LANLN.LE,LS,LW, IL,

$ VX,VY,SE(1+KE(1,M1 ,N)),SE(2t-KE(1,M1 ,N)),XW,YW,LO,CO'fNT,
$ FLAG)

CALL MESSAGA (7HMOVECEN)

IF(.NOT.FLAG) RETURN4

DO 800 I=IA1,IBl
I U=I -IA 1+ 1
XW(IU):X(I)-XCEN(JI)+VX(K)
YW(IU)=Y(I)-YCEN(Jl)+VY(K)

800 CONTINUE
CALL MESSAGC(711MOVECEN,7HVEC
CALL VEC(1,IW1,XW,YW)
CALL MESSAGA(7HMOVECEN)
JJ=JJ+1
CALL MESSAGC(7HMOVECEN,7HPUT

CALL PUT(2,MLN,JJ,IWI,XW,YWIAIB,JA,JB,J,X,Y,ILA,JLA)

100CONT~INUE
DOO 300II1,B

3100) CONrINUE

CALL VEC(1,11,XE YW

CALL MESSAGA (7HMOVECEN NJIi,XWY, A I.AJBJY LAJA

CALL MESSAGC(7HMOVECEN,7HPUT

A- 44

CALL MESSAGA (7HMOVECEN)P(J)=P(JA
3900 CONTINUE
4000 CONTINUE

CALL MESSAGC(7HMOVECEN, 7HUPDATE
CALL UPDATE(MIN,JAJB,X,Y,A,B,P,XCEN,YCEN,J,ILA,JLA,SE,KE,

S H.KLA,FLAG,2)
CALL MESSAGA(7HMOVECEN)
WRITE (6,97)

C ENDFILE 6
WRITEC 7,97)

C ENDFILE 7
WRITE(8, 97)

97 FORMAT(*SLIN 1E)
CALL MESSAGR I7HMOVECEN)
RETURN

END4
SUBROUTINE NEWCEN(XO,YO,LAX,LAY,LIA,LIB,LAN,LN,LE LS,LW, IL,VX,VY,

C S SEI,SE2,XW.YW,L0,COUNT,FLAG)

C NEWCEN ITERATIVELY CALCULATES CANDIDATES FOR NEW VELOCITY CENTROIDS. ALL
C CANDIDATES ARE OF THE FORM (X(A),Y(A)) W4HERE -

C X(A)=SE1+(XO-SE1)COS(A)4(YO-5E2)SIN(A)
C Y(A)=SE2+(YO-SE2)COS(A)-(XO-SEI)SIN(A).
C THE AL-GORIHM STOPS WHEN A NEGATIVE A=A1 AND A POSITIVE A:A2 ARE FOUND
C S.T. (X(Al),Y(A1)) AND (X(A2),Y(A2)) ARE CONTAINED IN NO LAND MASS,
C OR WHEN TIME IS UP.
C NEWCEN IS CALLED BY MOVECEN.

DIMENSION LIA~i),LIB(1),VX(l),VY(1),XW(l),YWII),XS(200),YS(200)
REAL LAXl),LAYI1),LN(1),LE(1),LS(1),LW(1)
INTEGER TIME, COUNT, ENSY02, ENS
LOGICAL FLAG,FLAGIMINIMAX
DATA P1/3.141592653/
CALL MESSAGA(7H-NEWCEN
XOS=XO-SE1
YOS=YO-SE2
DELTA=PI /18.
D2:DELTA
FLAG . T.
FLAGI=,F.
WRITE(7,10) XO,YO,SE1,SE2,XOS,YOS

TO0FORMAT(0(O= *,G15.5,* YIO= *,G15.5,* SET= *,G15.5.* SE2= *,G15.5,
S* XOS' *~,G5.5,* YOS= *,G15.5)

C ENOFILE 7
KAY=1 8

C KK IS THE NEW CENTROID INDEX OF DIRECTION.

C WH-EN KK=1, 'THE COUNTERCLOCKWISE NEW CENTROID IS COMPUTED AND STORED IN
C (VX(I),VY(1)). WHEN KK=2, THE CLOCKWISE NEW CENTROID IS COMPUTED) AND
C STORED IN (VX(2),VY(2)).

DO 3000 KK=1,2
10=0

190 CONTINUE
TI ME=0

C TIME COUNTS THE ABSOLUTE NUMBER OF CANDIDATES FOR NEW CENTROID
C GENERATED FOR FIXED KK.

200 CONTINUE
DO 2000 ITER=1,KAY
TIME=TIME+l
DELI :OELTA I TER

A-45

IF(0. NE. 0) DELI :DI+D2wi TERh
IF(KK.EO.1) DELI=-DELI
COSDEL:COS(DELI)
SINDEL=S[N(DELI)

C
C COMPUTE CANDIDATE FOR NEW CENTROID, (X1,Yl).
C

Xl:SE1 IXOS*COSDEL+YCS*SI NDEL
Y1 :SE2+YOSxCOSDEL-XOS*SI NDEL
WRITE(7 15) TIME,ITER,DELI,X1,Y1

S* Yl= *',G15.5)
CALL MESSAGC(7HNEWCEN ,7HENSYD2)

C ENDFILE 7
C
C CHECK FOR (X1,Y1) IN LAND IL. IF SO, COMPUTE NEW (Xl,Yl)
C

ENS:ENSYD2(DBLE(X),DBL-E(Y),XW,YW,LO)
WRITE(7,17) ENS

17 F0RMAT(*ENSYD2=*,12)
IF(ENS.EO.l) GOTO 1900
FLA0i :*T.

C
C (X1,Y1) IS NOT CONTAINED IN LAND MASS IL.
C CHECK FOR (X1,Y1) CONTAINED IN OTHER LAND MASSES.

DO 1000 L=1,LAN
C
C WHEN L:IL, THE ANSWER IS ALREADY KNOWN.
C

IF(L.EQ.IL) GOTO 900
CALL MESSAGC(7HNEWCEN ,7flMINIMAX)

C CHECK FOR (Xl,Y1) IN THE RFCTANGLE OF LAND L. IF NOT INCREASE L..
IF(MINIMAX(Y1 ,X1,Y1 ,X1,LN(L)LE(L),LS(L),LW(L))) GOTO 900

C CHECK FOR (Xl,Yl) IN LAND L. IF NOT INCREASE L
L = L IA (L)
L2=LIB(L)
DO 400 I=LI,L2

10=1 -L1+1
XS(O)=LAX(I)
YS(IO)=LAY(I)

400 CONTINUE
I 0L2-L1 +1
CALL. MESSAGC(7HN'EWCEN ,7HENSYD2
ENS=ENISYD2(DBLE(XI),DBL-E(Y1),XS,YS,10)
WRITE(7,17) ENS
IF(ENS.EQO) GOTO 900

C
C (Xl,Yl1 IS CONTAINED IN LAND MASS L. THE INTERVAL,CDELI-D2,DELI3,HAS
C THE PROPERTY (X(DELIVD2),Y(DELI-D2)) IS IN LAND IL, AND
C (X(DELI),Y(DELI)) IS IN LAND L. THE INTERVAL IS SEARCHED TO FIND
C (XI ,Yl) CONTAINED IN NO LAND.
C

I10=L
Dl DEL I-02
D2=D2/ 10.
IF(TIME.LE.COUNT) GOTO 200
WRI TE(6, 20)

C ENDFILE 6
WRI TE(8,201

20 FORMAT(* THE NUMBER OF ALL-OWED ITERATIONS IS EXCEEDED.*,

A-46

$ *RETURN CONTROL TO FUNCTION SELECTION (Y OR N)*)
READ(5,25) 0

25 FORMAT(A1)
IF(G.EQ.IHY) FLAG=.F.
IF(.NOT.FLAG) RETURN
WRITE(6,30)

C ENDFILE 6
WRITE(8,30)

30 FORMAT(* THE NEWCEN INTERATIONS WILL CONTINUE.*)
GOTO 190

900 CONTINUE
C
C (XI,Y1) IS NOT CONTAINED IN LAND MASS IL, NOR IN THE RECTANGLE OF
C LAND MASS L, NOR IN LAND MASS L.
C
1000 CONTINUE

C
C (X1,Y1) IS A FEASIBLE NEW CENTROID, SINCE IT IS CONTAINED IN NO
C LAND MASS.
C

VX(KK)=X1
VY(KK)=Y1

GOTO 2900
1900 CONTINUE

C
C (X1,Y1) IS CONTAINED IN LAND MASS IL
C
2000 CONTINUE
2900 CONTINUE
3000 CONTINUE

WRITE(7,49)
49 FORMAT(xCOUNTERCLOCKWISE NEW CENTROID WHEN KK=I, CLOCKWISE NEW w,

S *CENTROID WI'EN KKz2.*)
DO 4000 KK=1,2
WRITE(7,50) KK,VX(KK),KK,VY(KK)

4000 CONTINUE
50 FORMAT(*VX(*,I1,*)= *,G15.5,* VY(*,II,E)= *,G15.5)

CALL MESSAGR(7HNEWCEN
RETURN
END
SUBROUTINE REMAIN(XS,YS, IS,LAX,LAY,LIA,LIB,LAN,XW,YW, IW,RX,RY,IR,

S LN,LE,LS,LW,ALPHA,XPC,YPC, ICI,XCEN,YCEN,XWO,YWO,NUM,REM,LL,
S AREAS, INUM)

C

C REMAIN COMPUTES THE REMAINDER POLYGONS. THAT IS A POLYGON 0 IS COMPUTED
C FROM XPC,YPC, XCEN,YCEN, AND THE SCALE FACTOR ALPHA. REMAIN" CALCULATES
C THOSE PARTS OF 0 INTERSECTING NO LAND MASS. EACH SUCH PART OF 0, CALLED
C A REMAINDER POLYGON, IS A MEMBER OF REMAINDER SET LL.
C ALL REMAINDER SETS ARE STORED IN XWO,YWO.
C REM(1,LL) IS THE OFFSET OF THE INDEX OF REMAINDER SET LL, ALSO CALLED
C REM1,IN NUM.
C REM(2,LL) IS THE NUMBER OF POLYGONS IN REMAINDER SET LL, ALSO CALLED
C MAXPOL, IN NUM.
C NUM(1,J) IS THE OFFSET OF THE INDEX OF THE JTH POLYGON IN XWO,YWO,
C ALSO CALLED NUMI.
C NUM(2,J) IS THE NUMBER OF VERTICES IN THE JTH POLYGON IN XWO,YWO,
C ALSO CALLED NUM2.
C THE OFFSET OF POLYGON K IN REMAINDER SET LL IS REM(1,LL)+K
C THE OFFSET OF THE INDEX OF POL.YGON K IN REMAINDER SET LL IN XWO,YWO IS
C NUM(1,REM(I,LL)+K).
C THE VERTICES OF POLYGON K IN REMAINDER SET LL ARE GIVEN BY

A-47

Ik

C XWO(NUM(1,REM(,LL+K)+H)YWO(NUM(1,REM(1,LL)+K)+H), I=1,NUM(2,REM(1,LL)
C +K)
C AREAS(LL) IS THE AREA CONTAINED THE LARGEST POLYGON IN REMAINDER SET LL.
C INUM(LL) IS THE INDEX OF THE LARGEST POLYGON IN SET LL.
C REMAIN IS CALLED BY GOLOSEC AND POSINT.

REAL LAX~i),LAY(1),NORTH,LN(1),LE(1),LS(1),LW(1)

I NTEGER REM(2,1), REMI
DIMENSION XPC(1),'YPC(1),LIA(1),LIB(1),XW(1),YWC1), IW(2, 1),

S RX(1),RY(1),IR(2,1), INUM(1),XWO(1),YWO(1),
S NUM(2,1),AREAS(1),XS(l),YS(1), IS(2, 1),XT(200),YT(200),WK(300)
CALL MESSAGA(7HREMAIN)
IR(I1)=IS(1,*1) IW(1,1)=Q
REMi =0
IF(LL.GT.1) REMI=REM(1,LL)
NUMR=NUM(1, REMi +1)
DO 1000 I=1,IC1
RX(I)=ALPHAEXPC(I)+(l.-ALPHA)'-XCEN
RY(I)=ALPHA*YPC(I)+(1.-ALPHA)mYCEN

1000 CONTINUE
IR(2, 1)=C1
JMAX~ 1
MAXPOL~ 1

C MAXPOL KEEPS A RUNNING TOTAL. OF THE NUMBER OF POLYGONS IN POSITION

C POLYGONS 1 TO IP-1 BUT NOT IN LAND 1 TO IL. MAXPOL IS UPDATED
C IMMEDIATELY BEFORE IP INCREASES AND AT THAT POINT IT IS THE
C NUMBER OF POLYGONS IN POSITION POLYGONS I TO II' BUT NOT IN LAND
C 1 TO IL.

C MAXPOL COUNTS THE NUMBER OF POLYGONS STORED IN XWO,YWO FOR REMAINDER
C SET LL, LAN IS THE NUMBER OF LAND MASSES.
C

DO 4000 [L=1,LAN
WRITE(7,20) IL

20 FORMAT(*IL=*,13)
C
C TEST EACH CHAIN IN RX,RY FOR INTERSECTION WITH LAND MASS IL
C

NO=MAXPOL
MAXPOL=0
Li =LIA(IL)

DO 3000 IP=1,NO
CALL MESSAGC(7HREMAIN ,7HRECTAN

CALL RECTAN(11,12,RX,RY,NORTH,EAST,SOUTH,WEST)
CALL MESSAGC(7HREMAIN 71AMINIMAX)
IF(MINIMAX(NORTH, EAST,SOUTHI,WEST, LN(IL) ,LE(IL) LS(IL),

s LW(IL))) 1500,1700
1500 CONTINUE

C
C POLYGON IP DOES NOT INTERSECT LAND MASS IL.
C STORE POLYGON IP IN (XW,-O,YWO).
C

CALL MESSAGC(7HREMAIN ,7HINTO
JMI N=JMAX I P
CALL INTO(RX,RY, IR,JMIN,JMAX,XWO,YWO,NUJM,REM,LL,MAXPOL, IP,

$ IL)
C

A-48

C INCREMENT IP COUNTER

GOTO 2900
1700 CONTINUE

C
C A NONEMPTY INTERSECTION BETWEEN IL AND IP IS POSSIBLE.
C GENERATE AND STORE THE POLYGON(S) IN IP BUT NOT IN IL
C IN (XWO,YWO). KALC=3.

DO 1800 1=11,12
10=1-11+1
XW(IO)=RX(I)
YW(IO)=RY(I)

1800 CONTINUE

DO 1900 I=L1,L2
LO=I-Li+i
XT(LO)=LAX(I)
YT(LO)=LAY(I)

1900 CONTINUE
CALL MESSAGC(7HREMAIN ,7HIUCALC
CALL IUCALC(XW,YW, IO,XT,YTLO,3,WK,300,JMAX, IS,20,XS,YS,200)
CALL MESSAGA(7HREMAIN
IF(JMAX.LE.0) 1950,2000

1950 WRITE(8,35) JMAX
WRITE(6,35) JMAX

C ENDFILE 6
WRITE(7,35) JMAX

C ENDFILE 7
35 FORMAT(*IUCALC ERROR IN REMAIN.JMAX= *,13)

STOP 10
2000 CONTINUE

WRITE(8,40) IL,IP,JMAX
WRITE(6,40) IL,IP,JMAX

C ENDFILE 6
WRITE(7,40) IL,IP,JMAX

C ENDFILE 7
40 FORMAT(*IL=*,I3,* IP=*,13,* THE NUMBER OF RESULTS CHAINS ,

$ *=JMAX= *,13)
JMIN=1
CALL MESSAGC(7HREMAIN ,7HINTO
CALL INTO(XS,YS, IS, JMIN,JMAX,XWO,YWO,NUM,REM,LL,MAXPOL,IP,

$ IL)
CALL MESSAGA(7HREMAIN

2900 CONTINUE
3000 CONTINUE

C
C THE FOLLOWING CODE TRANSFERS THE DEVELOPING REMAINDER RESULT, IN
C (XWO,YWO) TO (RX,RY). THIS TRANSFER IS UNNECESSARY WHEN IL=LAN.

IF(IL.EQ.LAN) GOTO 3999
C

C MAXPOL=REM(2,LL)
C TRANSFER TO (RX,RY) THE REMAINDER POLYGONS COMPUTED FROM THE
C INTERSECTION OF LAND MASS IL AND THE CURRENT CONTENTS OF (RXRY).
C NUMR=THE OFFSET OF THE INDEX OF POLYGON 1 IN SET LL.
C NUMI=THE OFFSET OF THE INDEX OF POLYGON IP IN SET LL.
C THEREFORE NUM1=NUMR+NUM(2,REMI+1)+.. +NUM(2,REMI+IP-1), FOR IP>I,
C WHENCE NUM1-NUMR=NUM(2,REM1+1)+...+NUM(2,REM14IP-1) IS THE
C APPROPRIATE OFFSET IN IR.
C
C
C4

WRITE(6,45) IL,MAXPOL

A-49

-I,

C ENDFILE 6
WRITE(7,45) IL,MAXPOL
WRI TE(7.50)
WRITE(8,45) IL,MAXPOL

45 FORMAT(* AT THE END OF ITERATION *,13,* MAXPOL= *,13)
50 FORMAT(xTHE CONTENTS OF (RX,RY) ARE *

DO 3500 IP=1,MAXPOL
JO=REM1 +1P
NUMI =NUM(1,JO)
IR1:IR(1,IP)=NUMl-NUMR
IR2=IR(2, IP) =NUM(2, JO)
DO 3400 I=1,1R2

RX(Rl+I)=XWO(NUM1+I)
RY(IR1+I)=YWO(NUMI+I)

3400 CONTINUE *
WRITE(7,55) IP

55 FORMAT('uIP= *,13)

C ENDFILE 7
3500 CONTINUE
3999 CONTINUE
4000 CONTINUE

C
C DETERMINE AREAS(LL)
C

CALL MESSAGC(7HREMAIN ,7HAREA
C
C COMPUTE AREA OF LARGEST POLYGON.
C

I NUM(LL) =1
AREAS(LL)=AREA(XWO,YWO,NUM,REM~I-1
EP= .0001
IF(MAXPOL..EQ.1) GOTO 5050
DO 5000 IP=2,MAXPOL
AR=AREA(XWO, YWO, NUM, REMi +1P)
IF(AREAS(LL).GE.AR-EP) GOTO 4900
AREAS(LL) =AR
I NUM(LL) =I P

4900 CONTINUE
5000 CONTINUE
5050 CONTINUE

CALL MESSAGA(7HREMAIN
WRITE(7,65) LL

65 FORMAT(xREMAINDER SET *,I3)
WRITE(7,70) LL,REM(1,LL),LL,REM(2,LL),MAXPOL

70 FORMAT(*REM(1,*, I3,*):*, I3,* REM(2,*,I3,,g)=*,13,* MAXPOL=*, 13)
DO 6000 [P=1,MAXPOL

JO=REM1 +1P
NUMi :NUtl(l1,JO)
NUM2=NUM(2, JO)
WRITE(7,7t5) IPJO,NUM1,JO,NUM2
WRITE(7,80) (XWO(NUM1+I),YWO(NUM1+I),I=1,NUM2)

C ENDFILE 7
6000 CONTINUE

75 FORMAT(*I P=*,1I3,* NUM(l1, *, 13, w)=*,I 3,* NUM(2, w, 3, *)=*, 13, THE*
S ,*CONTENTS OF XWO,YWO ASSOCIATED WITH THESE INDICES ARE *

80 FORMATC5(GI3.6,G13.6))
RETURN
END

A- 50

Appendix B

PACKAGE EUCALC SOURCE CODE

B-1

SUBROUTINE IUCALC(APX,APY,NOAP,BCX,BCY,NOBC,KALC,
WORK,WRKMAX,NORC, INORC, INOMAX,RCX,RCY,NRCMAX)

C
C THIS ROUTINE (1) DETERMINES THE POLYGONS DEFINING THE UNION,

C INTERSECTION, OR RELATIVE DIFFERENCE (I.E. THE INTERIOR OF ONE
C THAT IS NOT INTERIOR TO THE OTIIER) OF TWO GIVEN POLYGONS, OR
C (2) DETERMINES WHAT PORTIONS OF A CHAIN OF LINE SEGMENTS LIE ON
C THE BOUNDARY, INTERIOR, OR EXTERIOR TO A GIVEN POLYGON.
C

INTEGER NOAP,NOBC,KALC
REAL APX(NOAP),APY(NOAF),BCX(NOBC),BCY(NOBC)

C * m**w**m=*m*==* USER SPECIFIED VARIABLES :
C APX A REAL ARRAY OF THE X COORDINATES OF A, THE FIRST POLYGON
C APY A REAL ARRAY OF Y COORDINATES OF THE A POLYGON
C NOAP AN INTEGER COUNT OF THE NUMBER OF POINTS DEFINING THE A POLYGON.
C THE POLYGON CONSISTS OF LINE SEGMENTS FROM APX(1),APY(1) TO
C APX(2),APY(2) TO ... TO APX(rOAP),APY(NOAP) TO APX(1),APY(1)
C
C IF KALC IS FOUR OR LESS:
C BCX A REAL ARRAY OF THE X COORDINATES OF B, THE SECOND POLYGON
C BCY A REAL ARRAY OF Y COORDINATES OF THE B POLYGON
C NOBC AN INTEGER COUNT OF THE NUMBFR OF POINTS DEFINING THE B POLYGON
C KALC AN INTEGER SPECIFYING THE DESIRED TYPE OF OVERLAY
C KALC=I UNION OF A AND B
C KALC=2 INTERSECTION OF A AND B
C KALC=3 REI.ATIVE DIFFERENCE OF A TO B (A INTERSECT NOT B)
C KALC=4 RELATIVE DIFFERENCE OF B TO A (B INTERSECT NOT A)
C
C IF KALC IS GREATER THAN FOUR, BCX,BCY IS AN OPEN CHAIN OF SEGMENTS
C (RATHER THAN A CLOSED POLYGON) FROM BCX(l),BCY(1) TO BCX(2),BCY(2)
C TO . . . TO BCX(NOBC),BCY(NOBC)
C KALC=5 SUBCI'IAINS OF B ON THE BOUNDARY OF A
C KALC=6 SUBCIl.AINS OF B EXTERIOR TO A
C KALC=7 SUBCHAINS OF B INTERIOR TO A
C KALC=8 SUBCH-IAINS OF B EXTERIOR TO OR ON THE BMUNDARY OF A
C KALC=9 SU2CHAINS OF B INTERIOR TO OR ON THE BOUNDARY OF A
C
C

INTEGER WRK"AX,WORK(WRKMAX)
C WORK< SPACE *W*EEWsu
C
C WORK IS A REAL*4 ARRAY OF LENGTH NOWORK. THE AMOUNT OF WORK SPACE
C REQUIRED CA' BE ESTIMATED BY THE FORMULA NOAP+NOBC+6*K+2 WHERE K
C IS THE MAXIMUM NUMBER OF INTERSECTIONS EXPECTED.
C WRKMAX THE INIEGER LENGTH OF THE WORK ARRAY.
C
C
C , RESULT VARIABLES =

INTEGER NORC, INORC(2,NORC)
REAL RCX(1),RCY(1)

C NORC AN INTEGER COUNT OF THE NUMBER OF CHAINS IN THE OVERLAY.
C NORC=O MEANS NO RESULT CHAINS HAVE BEEN CALCULATED. EITH 1) NO
C RESULT EXISTS OR 2) THE RESULT IS THE SAME AS THE ORIGINAL DATA.
C NORC IS ALSO AN ERROR INDICATOR FOR THE FOLLOWING TYPES OF ERRORS:
C NORC=-1 THE TWO DATA CHAINS ARE NOT SIMPLY CONNECTED AT
C A POINT OF INTERSECTION.
C NORC<-10 WORK SPACE IS OF INSUFFICIENT SIZE.
C
C INORC AN INTEGER MATRIX DIMENSIONED (2,NORC) WHERE NORC IS THE
C NUMBER OF CHAINS IN THE RESULT. INORC(1,I) IS THE OFFSET OF THE
C INDEX FOR THE ITH CHAIN OF THE RESULT IN THE RCX,RCY ARRAYS.

B-3

% .. • ., ,la "E~.9.-

C INORC(2,I) IS THE NUMBER OF POINTS IN THE ITH CHAIN OF THE
C RESULT.
C
C RCX A REAL ARRAY FOR THE X COORDINATES OF THE CHAIN(S) OF THE
C RESULT. THE X COORDINATES OF THE ITH CHAIN ARE RCX(K+1),RCX(K+2),
C RCX(K+3)........RCX(K+L) WHERE K=INORC(l14) AND L=INORC(2,I).
C RCY A REAL ARRAY FOR THE Y COORDINATES OF THE RESULT CHAIN(S).
C
C A DOUBLE PRECISION TO REAL FUNCTION, ROUND(X), IS CALLED BY
C THE SUBROUTINE IUCALC
C

1 NORC=O
CALL IUSUBI(APX,APYNOAP,BCX,BCY,NOBC,KALC,WORK(1),WORK(1),WRKMAX,

& NONXT,NORC)
IF(NORC .LT. DIRETURN
CALL IUSUB2(APX.APY,IABS(NOAP),BCX,BCY,IABS(NOBC),KALC,

& WORK(1),WORK(l),WRKMAX,NONXT,WORK(2*NONXT+u),
& NORC,INORC,INOMAXRCX,RCY,NRCMAX)
RETURN
END
SUBROUTINE IUSUBi (X,Y,NAS,U,V,NBS,OTYPE,NIXT,XYT,NWORK,NONXT,ERROR)
DIMENSION X(1) ,Y(1) ,U(1) ,V(1)
INTEGER OTYPE

C XYT A REAL MATRIX DIMENSIONED BY (2,MAXI) FOR STORAGE OF THE X AND Y
C COORDINATES OF THE INTERSECTION POINTS NOT OCCURING AT THE
C DEFINING POINTS.4

REAL XYT(2,I)
C
C NXT AN INTEGER MATRIX DIMENSIONED BY (2,MAX3) WHERE MAX3 EQUALS
C (NA+NB±TWICE THE NUMBER OF INTERSECTIONS NOT OCCURING AT THE
C DEFINING POINTS).

INTEGER NXT(2,1)
INTEGER ERROR

C ERROR=-ll XT,YT OVERRUN
C ERROR=-12 SEG OVER-RUN
C ERROR=-13 NXT OVER-RUN
C

LOGICAL ASENISF,BSENSE,SENSE, INTER,BSTEMP
DOUBLE PRECISION ZERO,ONE
DOUBLE PRECISION AX,AY,BX,BY,B2, OX, DY,

S AXB,AXD,BXD,D,ODMIN,DOTJM,DOTJNM,DOTJN,DOTJNN
DATA ZERO/O.DO/,ONE/1 .DO/
DATA ASENSE/.TRUE. / ,BSENSE/. TRUE, /
NA= IABS(NAS)
NB I ABS(NBS)
NXYEND=NWORK/2+1
BSTEMP=BSENSE
IF(OTYPE .LE. 4 AND. NAS .GT. O)ASENSE=SENSE(X,Y,NA)
IF(OTYPE .LE. 4 AND. NBS .GT. O)BSENSE=SENSE(U,V,NB)
NBT=NB
IF(OTYPE .GT 4)NBT=NB-1
IF(OTYPE EQ. 3)BSENSE=.NOT.BSENSE
I F(OTYPE .EQ. 4)ASENSE . NOT. ASENSE
IF(OTYPE .GT. 4)BSENSE=.TRUE.
NONXT=O
NXYT=O
DO 5 I=1,NA
IF(.NOT.ASENSE)NXT(2,1):MODCI+NA-2,NA)+I
IF(ASENSE)NXT(2, I) MOD(I ,NA HI
IF(X(I) EQ. X(NXT(2,I)) AND.

B-4

& Y(I) EQ. Y(NXT(2,Ifl)GO TO 403
5 N)XT(1,I)=l

IF(BSENSE)NXT(2,1+NA)=MOD(I,NB)+NA+I
JF(.NOT.BSENSE)N)T(2,i+NA):MODHI+NB-2,NB)+NA+I
IF(U(I) EQ. U(NXT(2,I+NA)-NA) AND.

& V(I) EQ. V(NXT(2,I+NA)-NA))0O TO 403
10 NXT(1,I+NA)=1+NA

BSENSE=BSTEMP
NONXT=NA+NB

XJN=X(1)
YJN=Y(1)
D0 65 I=1,NBT
N=NXT(2, H-NA)
UOLD=U(I)
VOLD=V(I)
NOLD I +NA

C START OF LOOP ON J
11 BX=U(N-NA) -UOLD

BY=V(N-NA) -VOLD
B2=BX**2+By*2
I NTER=.FALSE.

14 XJ=XJN
YJ=YJN
JN=NXT(2, J)
IF(JN .LE. NA)GO TO 20
JZ=-NXT(1 JN) -NA-NB
IF(JZ .LE. 0)GO TO 16
XJN=XYT(1 ,NXYEND-JZ)
YJN=XYT(2, NXYEND-JZ)
GO TO 22

16 JZ=JZ+NB
XJN=U(JZ)
YJN=V(JZ)
GO TO 22

20 XJN=X(JN)
YJN=V (JN)

22 DX=XJ-UOLD
DY=YJ-VOLD
AX=XJN-XJ
AY=YJN-YJ
AXB=AX*BY -AY*BX
BXD=BX3DY-BY*DX
IF(AXB EQ. ZERO)GO TO 30
O=BXD/AXB
IF(O .LE. ZERO OR. 0 .GT. ONE)GO TO 45
AXD=AX*DY -AY*DX
D=AXD/AXB
IF(D LE. ZERO OR. 0 .GT. ONE)GO TO 45
K=O
L=O
XI =ROUND(UOI.D+D*BX)
YE :ROUND(VOL.D+OWBY)
IF(XI NE. UOLD OR. YI NE. VOLD)GO TO 24
K=NOLD

24 IF(XI NE. U(N-NA) OR. YI NE. V(N-NA))GO TO 26
K=N

26 XP=RCUND(XJ+0mAX)
YP=ROUND(YJ+QmAY)
IF(XP NE. XJ OR. YP NE. YJ)GO TO 28

B- 5

L=JV
28 IF(XP NE. XJN OR. VP NE. YJN)GO TO 40

L=JN
GO TO 40

30 IF(BXD NE. ZERO)GO TO 45
K=O
L=O
DOTJM= DXxIBX+DY *BY
DOTJNM: (XJN-UOLD) *BX+(YJN-VOLD) *BY
DOTJN=(XJ-U(N-NA))xBX+(YJ-V(N-NA))*BY
DOTJNN=(XJN-U(N-NA))*BX+(YJN-V(N-NA))*BY

C IS J OUTSIDE N-N AND JN OUTSIDE N-N AND
C N OUTSIDE J-JN AND M OUTSIDE J-JN

IF(DOTJNICDOTJM .GT. ZERO AND. DOTJNM*DOTJNN .GT. ZERO AND.
S DOTJN*DOTJNN .GT. ZERO AND. DOTJM*DOTJNM .GT. ZERO)GO TO 45

C IS N INSIDE J-JN AND N INSIDE J-JN
IF(DOTJN*DOTJNN .LE. ZERO AND. DOTJM*DOTJNM LE. ZERO)GO TO 36

C IS J OUTSIDE N-N AND JN INSIDE M-N
C OR J INSIDE N-N AND JN INSIDE N-N
C AND JN RATHER THAN J FURTHER FRON N

IF(DOTJN*DOTJN GE. ZERO AND. DOTJNM*DOTJNN LE, ZERO OR.
$ OOTJM*DOTJN .LE. ZERO AND. DOTJNM*DOTJNN LE. ZERO AND.
S DOTJNM .GT. DOTJN)GO TO 38
IF(DOTJN EQ. ZERO)GO TO 45
D= DOT JM/B2
L=J
IF(DOTJN EQ. ZERO)K=N
GO TO 40

36 D=ONE
K=N
IF(DOTJN EQ. ZERO)L=J
IF(DOTJNN EQ. ZERO)L=JN
GO TO 40

38 IF(DOTJNN EQ. ZERO)GO TO 45
D=DOTJNM/B2
L=JN
IF(DOTJNN EQ. ZERO)K=N

40 IF(INTER AND. D .GT. OMIN)GO TO 45
IF(K NE. 0 AND. NXT(1,K) .LT. 0 OR.
*L NE. 0 AND. NXT(1,L) .LT. O)GO TO 45
DNIN=D

KMI N=K

I NTER=. TRUE.
45 J=NX(T(2,J)

IF(J NE I)GO TO 14

C END OF LOOP ON J

IF(.NOT.INTER)GO TO 65
C
C LINK THE NEW POINT INTO THE U,V POLYGON

IF(KMIN NE. O)GO TO 54
NONXT'zN0NXT4 1
IF(2*NONXT .LE. NWORK-2sNXYT)GO TO 46
ERROR= -13
GO TO 402

B -6

46 IF(LMIN .GT. 0)GO TO 52
NXYT=NXYT+l
IF(NXYT LE. (NWORK-2wNONXT)/2)GO TO 47
ERROR= -11
GO TO 402

47 XYT(1,NXYEND-NXYT)=XMIN
XYT(2, NXYEND-NXYT)=YMIN
NXT(1 ,NONXT)=-NXYT-NA-NB
UOLD=)(MI N
VOLD=YMI N?
GO TO 53

52 NXT(1,NONXT)=-LMIN
UOLD=X(LM IN)
VOLD=Y(LM IN)

53 NXT(2,NONXT)=NXT(2,NOLD)
NXT(2, NOLD)=NONXT
NOLD= NONXT
GO TO 55

54 NXT(1j(MIN)=-KMIN
IF(LMIN .GT. O)NXT(1,KMIN)=-LMIN

C
C LINK THE NEW POINT INTO THE X,Y POLYGON

55 IF(LMIN .GT. O)GO TO 59
NONXT=NONXT+l
IF(2wNONXT .LE. NWORK-2*NXYT)GO TO 56
ERROR= -13

GO TO 4024
56 IF(KMIN .GT. O)GO TO 57

NXT(1 ,NONXT)=NXT(1 ,NONXT-1)
GO TO 58

57 NXT(1,NONXT)=-KMIN
58 NXT(2,NONXT)=NXT(2,Jl)

NXT(2,J)=NONXT
GO TO 60

59 NXT(1,LMIN)=-NXT(1,LMIN)
60 IF(KMIN NE. N)GO TO 11
65 CONTINUE

C
402 CONTINUE

RETURN
403 ERR'OR=-1

GO TO 402
END
SUBROUTINE IUSUB2(X,Y,NA,U.V,NBOTYPE,NXT,XYT, NWORK,

S NONXT,SEG, NONIU,NIUS,NIUMAX,XIU,YIUNXYMAX)
DIMENSION X(NA),YNA)U(NBi,V(NB)
INTEGER OTYPE

C SEQ AN INTEGER MATRIX DIMENSIONED (3,MAX2) WHERE MAX2-2 EQUALS THE
C NUMBER OF INTERSECTIONS OF THE TWO FIGURES.

INTEGER NXvr(2,1) ,SEG(3, 1)
REAL XYT(2, I),XIU(1),YIU(1)
INTEGER NIUS(2,1)
INTEGER NIUMAX
LOGICAL IDENT
LOGICAL PTS
NSEG=0
NXYT=NONXT-NA-NB
IF(OTYPE .LE. 4)GO TO 68
IF(NXT(1,NA+1) .GT. D)NXT(1,NA+1)=-NXT(I,NA+1)
IF(NXT(1,NA+NB) GT. O)NXT(1,NA+NB):-NXT(1,NA+NB)

B-7

GO TO 69
68 CALL SEGDEF(IJ,V,NB,X,Y,NA,OTYPE,

S SEG,NSEG,NXT,NONXT,XYT,NWORK)
IF(NSEG .LT. 0)GO TO 400

69 CALL SEGDEF(X,Y,NA, U,V,NB,NA,OTYrE,
$ SEG,NSEG,NXT,NONXT,XYT,NWORK)
IF(NSEG .LT. 0)GO TO 400
lDENT=. TRUE.
DO 70 I=1,NSEG
IF(SEG(1,I) NE. 4)IDENT=.FALSE.
IZ=SEG(2, I)

70 CONTINUE
I Z=SEGC 3, NSEG)
IF(NXT(1, IZ) .LT. 0)NXT(1, IZ)=-NXT(1, IZ)

C TAKE CARE OF UNION AND INTERSECTION OF IDENTICAL POLYGONS
C AS A SPECIAL CASEJ-

IF(.NOT.IDENT OR. OTYPE .GT. 2)GO TO 80
NONI U=1
NI US(2, NONI U) =NB
NIUS(1 ,NONIU)=0
DO 71 l=1,NB
XI U(I) U(I)

71 YIU(I)V(I)
RETURN

C LINK THE SEGMENTS AND GENERATE THE RESULT VARIABLES

80 CONTINUE
89 NIU~1

NONI U=0
C SEG(1,I) 1 SEGMENT I OF A IS ON THE BOUNDARY OF B
C SEG(1,I) =2 SEGMENT I OF A IS OUTSIDE B
C SEGUl,I) =3 SEGMENT I OF A IS INSIDE B
C SEG(l,I) =4 SEGMENT I OF B IS ON THE BOUNDARY OF A
C SEGIIIJ) =5 SEGMENT I OF B IS OUTSIDE A
C SEG(1,I) =6 SEGMENT I OF B IS INSIDE A

90 DO 100 I~1,NSEG
GO TO (91 ,92,93,94,95,96,97,98,99),OTYPE

91 IF(SEG(1,I) EQ. 2 OR. SEG(1,I) EQ. 5)GO TO 110
GO TO 100

92 IF(SEG(l,I) EQ. 3 OR. SEG(1,I) EQ. 6)GO TO 110
GO TO 100

93 IF(SEG(1,I) EQ. 2 OR. SEG(1,I) EQ. 6)GO TO 110
GO TO 100

94 IF(SEG(1,I) EQ. 3 OR. SEG(1,I) EQ. 5)GO TO 110
GO TO 100

95 IF(SEG(1,I) EQ. 4)GO TO 110
GO TO 100

96 IF(SEG(1,I) EQ. 5)GO TO 110
GO TO 100

97 IF(SEG(1,I) EQ. 6)G0 TO 110
GO TO 100

98 IF(SEG(1,I) EQ. 4 OR. SEG(1,I) EQ. 5)GO TO 110
GO TO 100

99 IF(SEG(1,I) EQ. 4 OR. SEG(1,I) EQ. 6)00 TO 110
100 CONTINUE

RETURN
110 IP=SEG(2,I)

I I:NXT(1, IP)
NONI U=NONI WI

B-8

IF(NONIU .GT. NIUMAX)GO TO 400
III PTS=.FALSE.

NIUS(1,NONIU)=NIU-1
NI USC 2,NONI U) =0

120 IF(IP .EQ. SEG(3,I) AND. NXT(1,IP) EQ. 11 AND. PTS)GO TO 310
NI US 2, NONI U)=NI USC 2,NONI U) +1

121 IF(NIU .GT. NXYMAX)GO TO 400
CALL PNTGET(X,Y.NA,U,V,NB,XYT,NWORK,NXT(1,IP),

& XIU(NIU) ,YIU(NIU))
NI U=NI U+
PTS . TRUE.
IF(IP EQ. SEG(3,i) AND. SEG(2,I) NE. SEG(3,1))GO TO 125

122]P=NXT(2,IP)
GO TO 120

125 MFOTYPE .GT. 4)GO TO 310
DO 160 J=1,NSEG

JP=SEGC2, J)

IF(J NE. I AND. SEG(),I) .EO. SEGCI,J) AND.
s NXT(1,IP) EQ. NXT(1,JP))GO TO 300

160 CONTINUE
DO 180 J=1,NSEG
JP=SEG(2, J)
IF(NXT(1,IP) NE. NXT(1,JP))GO TO 180
GO TO (171,172,173,174),OTYPE

171 IF(SEG(1,J) EQ. 2 OR. SEGC1,J) EQ. 5)GO TO 300
GO TO 180

172 IF(SEG(1,J) EQ. 3 OR. SEGCI,J) EQ. 6)GO TO 300
GO TO 180

173 IF(SEG(1,J) EQ. 2 OR. SEGC1,J) EQ. 6)GO TO 300
GO TO 180 1

174 IF(SEG(14J) EQ. 3 OR. SEG(1,J) EQ. 5)GO TO 300
180 CONTINUE

DO 190 J=1,NSEG
JP=SEG(2, J)
IF(NXT(1,IP) EQ. NXT(1,JP) AND. SEG(1,J) .GT. O)GO TO 300

190 CONTINUE
NONI U=-2
GO TO 402

300 SEG(1,1V=-SEG(l,I)
IP=SEGC 2.J)
I =J
GO TO 122

310 SEGC 1,1)=-SEG(1,1)
GO TO 90

400 NONIU=-)2
402 RETURN

END
LOGICAL FUNCTION SENSE(X,Y,N)

C
C SENSE IS TRUE IF THE XY POLYGON CLOSES CLOCKWISE, FALSE IF
C IT CLOSES COUNTERCLOCKWISE
C

INTEGER N
REAL X(N),Y(N)
DOUBLE PRECISION TSUM
IFCN .LT. 3)RETURN
TSUM=0. DO
AYY(23-YC 1)
AX=X(2)-X(1)
DO 2 J:3,N
BY=Y(J)-YC1)

B-9

TSUM=TSUM+BY *AX -AY*'BX
AX=BX

2 AY=BY
SENSE=.FALSE.
IF(TSUM .LT. O.DO)SENSE=.TRUE.
RETURN
END
SUBROUTINE SE.GDEF(X,Y,NXY, U,V,NUV,OFFSET,OTYPE,

S SF7G,NSEG,NXT,NONXT,XYT,NWOR<)
C
C SEGDEF GENERATES THE SEG MATRIX. A SEGMENT IS A SERIES OF
C SUCCESSIVE SIDES OF ONE OF THE POLYGONS ALL LYING ALL INSIDE OR
C ALL OUTSIDE THE OTHER POLYGON, OR A SIDE OF ONE POLYGON LYING ON
C THE BOUNDARY OF THE OTHER. IF THE POLYGONS INTERSECT, THE END
C POINTS OF THE SEGMENTS LIE OF THE BOUNDARY OF THE OTHER POLYGON.
C IF THE POLYGONS DON'T INTERSECT OR ARE IDENTICAL, EACH POLYGON IS
C A SINGLE SEGMENT. EACH TRIPLET OF THE SEG MATRIX DEFINES A
C SEGMENT. THE FIRST NUMBER IN THE ITH TRIPLET CONTAINS A CODE:
C SEG(1,I) 1 SEGMENT I OF A IS ON THE BOUNDARY OF B
C SEG(I,I) =2 SEGMENT I OF A IS OUTSIDE B
C SEGIA,I) 3 SEGMENT I OF A IS INSIDE B
C SEG(1,I) = 4 SEGMENT I OF B IS ON THE BOUNDARY OF A
C SEG(1,I) = 5 SEGMENT I OF B IS OUTSIDE A

C SEG(1,I) =6 SEGMENT I OF B IS INSIDE A4
C SEG(2,I) IS THE INDEX IN THE NXT ARRAY OF THE FIRST POINT OF
C SEGMENT 1. SEG(3,I) IS THE INDEX IN THE NXT ARRAY OF THE LAST
C POINT OF SEGMENT I.
C

INTEGER NXY,NUV,OFFSET,NSEG,NXYT,OTYPE
INTEGER ENSYD2
REAL X(NXY) ,Y(NXY) ,U(NUV) VtNUV)
INTEGER NXT(2,1),SEG(3,1)
REAL XYT(2,1)
LOGICAL SUMLNK
INTEGER SOLD
MAX2: (NWORIK-2i*NONXTI*2/3
KK=2
IF(OFFSET .NE. O)KK=5
SUMLNK= .FALSE.
IOLD=OFFSET+1
MSTART= IOLD
NSTART~ 1
IF(OFFSET EQ. O)NSTART=NUV+l
IOF=-i
IFCNXTC1,IOLD) .GT. O)GO TO 40
SUMLNK=. TRUE.
SOLD= IOLD
MSTART= IOLD
IF(OTYPE .GT. 4)MSTART=NXY+NUV

40 INEW=NXT(2,IOLD)
IF(NXT(l,INEW) .LT. 0)GO TO 42
IF(.NOT.SUMLN(OR. lOF GE. O)GO TO 49
IOF=ENSYD2(DBLE(U(INEW-CFFSET)),OBLE(V(INEW-OFFSET,),X,Y,NXY)
GO TO 49

42 IF(SUMLNK)GO TO 43
MSTART= INEW
SUMLNK . TRUE.
SOL0 I NEW
GO TO 60

43 NSEG=NSEG+1

B-10

IF(NSEG .GT. MAX2)GO TO 51
SEG(2, NSEG) :SOLD
SEG(3, NSEG)=I NEW
SOLD I NEW
IF(IOF .LT. 0)G0 TO 45
SEG (1 *NSEG) =KK+ IOF
I OF= -1
GO TO 49

45 IF(OFFSET EQ. O)GO TO 46
CALL PNTGET(X,Y. NXY, U,V, NUVXYT,NWORK,

S -NXTC1,IOLD),XOLD,YOLD)
CALL PNTGET(X,Y,NXY,U,V, NUV,XYT,NWORK,

$ -NXT(1,INEW),XNEW,YNEW)
GO TO 47

46 CALL PNTGET(U,V, NUV,X,Y, NXY, XYT. NWORK,
S -NXT(1,IOLD),XOLD,YOLD)
CALL PNTGET(U,V,NUV,X,Y, NXY,XYT,NWORK,

S -NXT(1AINEW),XNEW,YNEW)
47 IOFMID=ENSYD2((XOLO+XNEW)/2DO.(YOL.D+YNEW)/2DO,X,Y,NXY)

473 IF(OTYPE .GT. 4)GO TO 484
I LS=NSTART
I =NXT(2, NSTART)

481 IF(NXT(1AILS) EQ. NXT(1,IOLD) AND. NXT(lI) EQ. NXT(1,INEW)
& OR. NXT(lI) EQ. NXT(1,IOLD) AND. NXT(1,ILS) EQ. NXT(1AINEW))
& GO TO 482

I LS= I

I=NXT(2, I)
IF(ILS EQ. NSTART)GO TO 484
GO TO 481

482 IOFMID=-I
484 SEG(1,NSEG)=KK+IOFMID
49 IF(MSTART NE. INEW)GO TO 60

I F(SUMLNK)IRET&JRN
IOF=ENISYD2(DBLE(U(1)),DBLE(V(1)),X,Y,NXY)
NSEG=NSEG+l
IF(NSEG .LE. MAX2)GO TO 52

51 NSFG=-12
GO TO 53

52 SEG(1,NSEG)=KK+ICF
SEG(2, NSEG)=OFFSET+l
SEG(3, NSEG)=SEG(2, NSEG)

53 RETURN
60 IOLD=INEW

GO TO 40
END
INIEGER FUNCTION ENSYD2(U,V, X,Y, N)

C THE FUNCTION ENSYD2 IS 1 IF THE POINT (U,V) IS INTERIOR TO THE
C X,Y POLYGON. ENSYD2 IS 0 OTHERWISE. THE POINT (UVI IS ASSUMED
C NOT ON THE BOUNDARY OF THE X,Y POLYGON.
C

INTEGER N
REAL)((N),Y(N)
DOUBLE PRECISION U,V
LOGICAL BOOL
ENSYD2=O
BOOL: .FALSE.
DO 10 I=1,N
I N:1+1
IF(IN .GT. N)IN:1
IF(Y(IN) EQ. Y(I) AND. X(IN) EQ. X(I))GO TO 10

B-11

IF(V .LE. Y(IN) OR. V .GT. YCI))GO TO 5
IF((U-X(I))*(Y(IN)-Y(I))-(V-Y(J))*i(X(IN)-X(I)) .LT. O.DD)

S BOOL=.NOT.BOOL
GO TO 10

5 IF(V .GT. Y(IN) OR. V LE. Y(I))GO TO 10
IF((U-X(I))*(Y(IN) -Y(I)) -(V-Y(I))*(X(IN) -XC I)) .GT. O.DD)

S BOOL=.NOT.BOOL
10 C;ONTINUE

IF(BOOL)ENSYD2=1
RETURN
END
SUBROUTINE PNTGET(X,YNA,U,V,NB,XYT, NWORK,K,A,B)
REAL X(1),Y(l),U(1),V(1),XYT(2, 1)
INTEGER K
JF(K .GT. NA+NB)GO TO 20
IF(K .GT. NA)GO TO 10
AmX(K)
BzY (K)
GO TO 30

10 A=UCK-NA)
B=V(K-NA)
GO TO 30

20 AzXYT(1 *NWORK/2+1 -K+NA+NB)
B=XYT(2, NWORK/2+1 -K+NA+NB)

30 RETURN
END
REAL FUNCTION ROUND(X1)
DOUBLE PRECISION A,Y,X,XI
REAL B(2),C(2)
EQUIVALENCE (B(1).,Y),(A,C(1))
XzDABS(XI)
ROUND=0.0
IF(X.EQ.0DO) RETURN
Y,=X
CA) =B(1).AND. 77770000000000000000B
C(2)=B(2) .AND. 77770000000000000000B
CC 2) = CC 2).OR. 00004000000000000000B
ROUND= X+A
IFCXl.LT.0.DO) ROUND=-ROUND
RETURN
END

B-12

II
DISTRIBUTION LIST

Name Number of Copies

Defense Technical Information Center 12
Cameron Station
Alexandria, VA 22314

Center for Naval Analyses 1
2000 North Beauregard 9treet
Alexandria, VA 22311

Defense Advanced Research Projects Agency I
Tactical Technology Office
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2
Code 431
Arlington, VA 22217

Dr. Thomas E. Fortmann 1
Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, MA 02138

Orincon Corporation I
3366 North Torrey Pines Court
Suite 322
La Jolla, CA 92037

DARPA Research Center I
Unit 1, Building 301-A
Naval Air Station
Moffett Field, CA 94035

Naval Postgraduate School
Technical Library

Monterey, CA 93940

Naval Underwater Systems Center
New London Laboratory
Code 313
New London, CT 06320

DL-1

Distribution List (Continued)

Name Number of CopiLes

Naval Underwater Systems Center
Code 352
Code 3502
Newport, RI 02840

Dr. J. Anton
Systems Control, Inc.
1801 Page Mill Road
Palo Alto, CA 94304

Office of Naval Research
Western Regional Office

1030 East Green Street
Pasadena, CA 91106

Naval Ocean Systems Center
Code 16
Code 724
Code 824
San Diego, CA 92152

Naval Surface Weapons Center
White Oak Laboratory
Code U-20
Silver Spring, MD 20910

Dr. Yaakov Bar-Shalom
The University of Connecticut
Department of Electrical Engineering

and Computer Science
Box U-157
Storrs, CT 06268

Mr. Conrad
Naval Intelligence Support Center
Code 20
Suitland, MD 20390

Naval Air Development Center
Warminster, PA 18974

Naval Electronics Systems Command
Washington, DC 20360
Code 320
Code 330
Code 350
PME-108

DL-2

